On equi-angular points
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 162-168
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A point $T$ is an equi-angular point of a collection of localized vectors if all of them are seen from $T$ at an equal oriented angle. It is proved that almost all triples of vectors in the plane with fixed origins (not all of which coincide) have an euqi-angular point. As a consequence, it is proved that if a triple of vectors in the plane has no equi-angular point, then their projections to a certain axis are equal.
@article{ZNSL_2003_299_a9,
     author = {M. D. Kovalev},
     title = {On equi-angular points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--168},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a9/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - On equi-angular points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 162
EP  - 168
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a9/
LA  - ru
ID  - ZNSL_2003_299_a9
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T On equi-angular points
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 162-168
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a9/
%G ru
%F ZNSL_2003_299_a9
M. D. Kovalev. On equi-angular points. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 162-168. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a9/