On the cohomology of real algebraic varieties
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 112-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A class of spaces with involution introduced by the author is studied:effective spaces, whose cohomology rings of fixed-point sets are completely determined by the spectral sequence of involution. Real algebraic varieties admitting a “cellular decomposition” are effective $M$-spaces. Under certain restrictions, one calculates the spectral sequence of involution and the total $\mathbb Z_2$ Betti number of the real part for real subvarieties of real algebraic varieties that are effective $GM$-spaces.
@article{ZNSL_2003_299_a7,
     author = {I. O. Kalinin},
     title = {On the cohomology of real algebraic varieties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--151},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/}
}
TY  - JOUR
AU  - I. O. Kalinin
TI  - On the cohomology of real algebraic varieties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 112
EP  - 151
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/
LA  - ru
ID  - ZNSL_2003_299_a7
ER  - 
%0 Journal Article
%A I. O. Kalinin
%T On the cohomology of real algebraic varieties
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 112-151
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/
%G ru
%F ZNSL_2003_299_a7
I. O. Kalinin. On the cohomology of real algebraic varieties. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 112-151. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/

[1] V. I. Arnold, “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funktsion. analiz i ego pril., 5:3 (1971), 1–9 | MR

[2] G. Bredon, Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[3] U. I. Syan, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 | MR

[4] V. M. Kharlamov, “Novye sravneniya dlya eilerovoi kharakteristik veschestvennykh algebraicheskikh mnogoobrazii”, Funktsion. analiz i ego pril., 7:2 (1973), 74–78 | MR | Zbl

[5] I. O. Kalinin, “Kogomologicheskie kharakteristiki veschestvennykh proektivnykh poverkhnostei”, Algebra i analiz, 3:2 (1991), 91–110 | MR | Zbl

[6] A. Degtyarev, “On the Pontrjagin–Viro form”, Amer. Math. Soc. Transl. Ser. 2, 202, 2001, 71–94 | MR | Zbl

[7] A. Degtyarev, V. Kharlamov, “Topologicheskie svoistva veschestvennykh algebraicheskikh mnogoobrazii: Du côte de chez Rokhlin”, UMN, 55:4 (2000), 129–212 | MR | Zbl

[8] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes Math., 1746, Springer, Berlin, 2000 | MR | Zbl

[9] U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR

[10] I. O. Kalinin, “Filtratsii, spektralnye posledovatelnosti, diskriminantnye mnogoobraziya” (to appear)

[11] W. Fulton, R. Lazarsfeld, “On the connectedness of degeneracy loci and special divisors”, Acta Math., 146 (1981), 271–283 | DOI | MR | Zbl

[12] V. M. Kharlamov, “Dopolnitelnye sravneniya dlya eilerovoi kharakteristiki chetnomernykh veschestvennykh algebraicheskikh mnogoobrazii”, Funkts. anal. i ego prilozh., 9:2 (1975), 51–60 | MR | Zbl

[13] O. Viro, Mutual position of hypersurfaces in projective space, Preprint | MR

[14] P. Deligne, Theorie de Hodge, II, Republications Math., IHES, 40, 1972 | MR