On the cohomology of real algebraic varieties
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 112-151

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of spaces with involution introduced by the author is studied:effective spaces, whose cohomology rings of fixed-point sets are completely determined by the spectral sequence of involution. Real algebraic varieties admitting a “cellular decomposition” are effective $M$-spaces. Under certain restrictions, one calculates the spectral sequence of involution and the total $\mathbb Z_2$ Betti number of the real part for real subvarieties of real algebraic varieties that are effective $GM$-spaces.
@article{ZNSL_2003_299_a7,
     author = {I. O. Kalinin},
     title = {On the cohomology of real algebraic varieties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--151},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/}
}
TY  - JOUR
AU  - I. O. Kalinin
TI  - On the cohomology of real algebraic varieties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 112
EP  - 151
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/
LA  - ru
ID  - ZNSL_2003_299_a7
ER  - 
%0 Journal Article
%A I. O. Kalinin
%T On the cohomology of real algebraic varieties
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 112-151
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/
%G ru
%F ZNSL_2003_299_a7
I. O. Kalinin. On the cohomology of real algebraic varieties. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 112-151. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a7/