On the complete upper angle about a~point on the Minkowski plane
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 42-53
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The dependence of the complete upper angle in the sense of A. D. Aleksandrov about a point on the Minkowski plane on the form of the “unit circle” (the centrally symmetric convex curve $\Phi$ determining the Minkowski metric $\rho_{\Phi}$) is studied. The complete upper angle is computed in three cases: if $\Phi$ is a square, a “cut circle,” or a “rounded rhombus”.
			
            
            
            
          
        
      @article{ZNSL_2003_299_a3,
     author = {Yu. G. Dutkevich},
     title = {On the complete upper angle about a~point on the {Minkowski} plane},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--53},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a3/}
}
                      
                      
                    Yu. G. Dutkevich. On the complete upper angle about a~point on the Minkowski plane. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 42-53. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a3/
