Strongly symmetric polyhedra
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 314-325 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Strongly symmetric polyhedra in $3$-space are defined and classified.
@article{ZNSL_2003_299_a21,
     author = {V. I. Subbotin},
     title = {Strongly symmetric polyhedra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {314--325},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a21/}
}
TY  - JOUR
AU  - V. I. Subbotin
TI  - Strongly symmetric polyhedra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 314
EP  - 325
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a21/
LA  - ru
ID  - ZNSL_2003_299_a21
ER  - 
%0 Journal Article
%A V. I. Subbotin
%T Strongly symmetric polyhedra
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 314-325
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a21/
%G ru
%F ZNSL_2003_299_a21
V. I. Subbotin. Strongly symmetric polyhedra. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 314-325. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a21/

[1] Mnogogranniki, Matematicheskaya entsiklopediya, 4, M., 1977

[2] L. A. Lyusternik, Vypuklye figury i mnogogranniki, Gostekhteorizdat, M., 1956

[3] D. I. Perepelkin, Kurs elementarnoi geometrii, Ch. 1, OGIZ GTTL, M.-L., 1948; Ч. 2, 1949

[4] H. S. M. Coxeter, Regular Polytopes, Dover Publ, NY, 1973 | MR

[5] V. I. Subbotin, “Vpolne simmetrichnye mnogogranniki”, Mezhdunarodnaya shkola-seminar po geometrii i analizu pamyati Efimova N. V., Tezisy dokladov, Rostov-na-Donu, 1998, 73–74