Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 300-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $f\colon S^2\looparrowright\mathbb R^3$ be a generic smooth immersion. The skeleton of $f$ is the following triple $(\Gamma, D, p)$. $\Gamma$ is the 1-polyhedron of singular points of $f$, $D=f^{-1}(\Gamma)$ is also a 1-polyhedron, and $p\colon D\to\Gamma$, $x\mapsto f(x)$, is the projection. For triples of the form $(D,\Gamma, p)$, where $\Gamma$ has at most 4 vertices, we give an iff-condition under which the triple is the skeleton of a smooth immersion $f\colon S^2\looparrowright\mathbb R^3$.
@article{ZNSL_2003_299_a20,
     author = {M. A. Stepanova},
     title = {Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {300--313},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a20/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 300
EP  - 313
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a20/
LA  - ru
ID  - ZNSL_2003_299_a20
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 300-313
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a20/
%G ru
%F ZNSL_2003_299_a20
M. A. Stepanova. Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 300-313. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a20/

[1] V. I. Arnold, A. I. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1979

[2] V. V. Goryunov, Local invariants of mappings of surfaces into three-space, Preprint, 1994 | MR

[3] N. Max, T. Banchoff, “Every sphere eversion has a quadruple point”, Contributions to Analysis and Geometry, John Hopkins University Press, 1997, 191–209 | MR

[4] T. Nowik, “Quadruple points of regular homotopies of surfaces in 3-manifolds”, Topology, 39 (2000), 1069–1088 | DOI | MR | Zbl