A property of the normal subdivision of space into polyhedra induced by a packing of compact bodies
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 38-41
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notion of densest packing of compact bodies, as introduced by Hilbert, is generalized to the notion of noncompletable packing of compact bodies. The bodies in the packing are equipped by marked points. Conditions on the arrangement of the marked points in the packing generalize those for the Delone–Aleksandrov point system. It is proved that in the Euclidean $n$-space the number of combinatorially distinct Voronoi–Dirichlet regions corresponding to the marked points is finite.
@article{ZNSL_2003_299_a2,
     author = {A. M. Gurin},
     title = {A~property of the normal subdivision of space into polyhedra induced by a~packing of compact bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--41},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a2/}
}
TY  - JOUR
AU  - A. M. Gurin
TI  - A property of the normal subdivision of space into polyhedra induced by a packing of compact bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 38
EP  - 41
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a2/
LA  - ru
ID  - ZNSL_2003_299_a2
ER  - 
%0 Journal Article
%A A. M. Gurin
%T A property of the normal subdivision of space into polyhedra induced by a packing of compact bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 38-41
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a2/
%G ru
%F ZNSL_2003_299_a2
A. M. Gurin. A property of the normal subdivision of space into polyhedra induced by a packing of compact bodies. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 38-41. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a2/

[1] D. Hilbert, Gesammelte Abhandlungen, V. 3, 1935

[2] Dzh. Konvei, N. Sloen, Upakovki sharov, reshetki i gruppy, T. 1, Mir, M., 1990

[3] A. M. Gurin, “Svoistva plotnykh upakovok vypuklykh tel v $\mathbb R^n$ i na sfere”, Vserossiiskaya shkola-kollokvium po stokhasticheskim metodam geometrii i analiza, Nauch. izd. TVP, M., 1994, 31–32 | MR

[4] B. N. Delone, N. N. Padurov, A. D. Aleksandrov, Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, GTTI, 1934

[5] A. A. Borisenko, “O sfericheskom izobrazhenii kratchaishei na vypukloi poverkhnosti”, Ukr. geom. sb., 10 (1970), 11–12