Singular links of two circles and a wedge of circles in the 3-sphere
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 295-299
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A homotopy classification of singular links of two circles and a wedge of circles in the 3-sphere is given. This result generalizes Milnor's one on homotopy classification of classical three-component links.
@article{ZNSL_2003_299_a19,
     author = {V. M. Nezhinskii and Yu. V. Petrova},
     title = {Singular links of two circles and a~wedge of circles in the 3-sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {295--299},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a19/}
}
TY  - JOUR
AU  - V. M. Nezhinskii
AU  - Yu. V. Petrova
TI  - Singular links of two circles and a wedge of circles in the 3-sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 295
EP  - 299
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a19/
LA  - ru
ID  - ZNSL_2003_299_a19
ER  - 
%0 Journal Article
%A V. M. Nezhinskii
%A Yu. V. Petrova
%T Singular links of two circles and a wedge of circles in the 3-sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 295-299
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a19/
%G ru
%F ZNSL_2003_299_a19
V. M. Nezhinskii; Yu. V. Petrova. Singular links of two circles and a wedge of circles in the 3-sphere. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 295-299. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a19/

[1] J. P. Levine, “An approach to homotopy classification of links”, Trans. Am. Math. Soc., 306:1 (1988), 361–387 | DOI | MR | Zbl

[2] J. Milnor, “Link groups”, Ann. of Math. (2), 59 (1954), 177–195 | DOI | MR | Zbl

[3] A. Skopenkov, “On the generalized Massey–Rolfsen invariant for link maps”, Fundamenta Math., 165 (2000), 1–15 | MR | Zbl