Singular links of two circles and a wedge of circles in the 3-sphere
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 295-299
Voir la notice du chapitre de livre
A homotopy classification of singular links of two circles and a wedge of circles in the 3-sphere is given. This result generalizes Milnor's one on homotopy classification of classical three-component links.
@article{ZNSL_2003_299_a19,
author = {V. M. Nezhinskii and Yu. V. Petrova},
title = {Singular links of two circles and a~wedge of circles in the 3-sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {295--299},
year = {2003},
volume = {299},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a19/}
}
V. M. Nezhinskii; Yu. V. Petrova. Singular links of two circles and a wedge of circles in the 3-sphere. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 295-299. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a19/
[1] J. P. Levine, “An approach to homotopy classification of links”, Trans. Am. Math. Soc., 306:1 (1988), 361–387 | DOI | MR | Zbl
[2] J. Milnor, “Link groups”, Ann. of Math. (2), 59 (1954), 177–195 | DOI | MR | Zbl
[3] A. Skopenkov, “On the generalized Massey–Rolfsen invariant for link maps”, Fundamenta Math., 165 (2000), 1–15 | MR | Zbl