Singular links of almost metastable dimensions
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 287-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The objects studied are singular links of $p_1$-,$\dots,p_r$-, $p$-spheres in the $n$-sphere. A theory of such singular links for $\max\{p_1,\dots,p_r\}<2n/3-1$ and $p<3n-3\max\{ p_1,\dots,p_r\}-5$ is constructed. The theory generalizes (as far as it is possible) the theory of singular links of $k$-,$\dots,k$-, $p$-spheres in the $(2k+1)$-sphere, where $k>1$, developed in the author's recent papers.
@article{ZNSL_2003_299_a18,
     author = {V. M. Nezhinskii},
     title = {Singular links of almost metastable dimensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {287--294},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/}
}
TY  - JOUR
AU  - V. M. Nezhinskii
TI  - Singular links of almost metastable dimensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 287
EP  - 294
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/
LA  - ru
ID  - ZNSL_2003_299_a18
ER  - 
%0 Journal Article
%A V. M. Nezhinskii
%T Singular links of almost metastable dimensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 287-294
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/
%G ru
%F ZNSL_2003_299_a18
V. M. Nezhinskii. Singular links of almost metastable dimensions. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 287-294. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/

[1] M. A. Kervaire, “An interpretation of G. Whitehead's generalization of H. Hopf's invariant”, Ann. of Math., 69 (1959), 345–365 | DOI | MR | Zbl

[2] P. Kirk, “Link homotopy with one codimension two component”, Trans. AMS, 319 (1990), 663–688 | DOI | MR | Zbl

[3] U. Koschorke, “Link maps and the geometry of their invariants”, Manuscr. Math., 61 (1988), 383–415 | DOI | MR | Zbl

[4] U. Koschorke, “On link maps and their homotopy classification”, Math. Ann., 286 (1990), 753–782 | DOI | MR | Zbl

[5] U. Koschorke, “Link homotopy with many components”, Topology, 30 (1991), 267–281 | DOI | MR | Zbl

[6] W. S. Massey, D. Rolfsen, “Homotopy classification of higher dimensional links”, Indiana Univ. Math. J., 34 (1985), 375–391 | DOI | MR | Zbl

[7] V. M. Nezhinskii, “Gruppy klassov psevdogomotopnykh singulyarnykh zatseplenii, I”, Zap. nauchn. semin. LOMI, 168, 1988, 114–124 | MR | Zbl

[8] V. M. Nezhinskii, “Psevdogomotopiya zatseplenii korazmernostei bolshikh dvukh”, Zap. nauchn. semin. POMI, 208, 1993, 136–151 | MR

[9] V. M. Nezhinskii, “Singulyarnye zatsepleniya tipa $(p,2k+1)$ v $(4k+2)$-mernoi sfere”, Algebra i analiz, 5:4 (1993), 170–190 | MR

[10] V. M. Nezhinskii, “Analog gruppy Milnora zatsepleniya v teorii mnogomernykh zatseplenii”, Zap. nauchn. semin. POMI, 252, 1998, 175–190 | MR

[11] V. M. Nezhinskii, “Singulyarnye zatsepleniya sfer razmernostei $k,\dots,k,p$ v $(2k+1)$-mernoi sfere”, Algebra i analiz, 11:1 (1999), 171–243 | MR | Zbl

[12] V. M. Nezhinskii, “Psevdogomotopicheskie invarianty singulyarnykh zatseplenii”, Uspekhi mat. nauk, 54:3 (1999), 175–176 | MR | Zbl

[13] G. P. Scott, “Homotopy links”, Abh. Math. Sem. Univ. Hamburg, 32:3–4 (1968), 186–190 | DOI | MR | Zbl