Singular links of almost metastable dimensions
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 287-294

Voir la notice de l'article provenant de la source Math-Net.Ru

The objects studied are singular links of $p_1$-,$\dots,p_r$-, $p$-spheres in the $n$-sphere. A theory of such singular links for $\max\{p_1,\dots,p_r\}2n/3-1$ and $p3n-3\max\{ p_1,\dots,p_r\}-5$ is constructed. The theory generalizes (as far as it is possible) the theory of singular links of $k$-,$\dots,k$-, $p$-spheres in the $(2k+1)$-sphere, where $k>1$, developed in the author's recent papers.
@article{ZNSL_2003_299_a18,
     author = {V. M. Nezhinskii},
     title = {Singular links of almost metastable dimensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {287--294},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/}
}
TY  - JOUR
AU  - V. M. Nezhinskii
TI  - Singular links of almost metastable dimensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 287
EP  - 294
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/
LA  - ru
ID  - ZNSL_2003_299_a18
ER  - 
%0 Journal Article
%A V. M. Nezhinskii
%T Singular links of almost metastable dimensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 287-294
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/
%G ru
%F ZNSL_2003_299_a18
V. M. Nezhinskii. Singular links of almost metastable dimensions. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 287-294. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a18/