On recognition of virtual braids
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 267-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The virtual braid group $VB_n$ containing the Artin braid group $B_n$ as a subgroup is studied. A complete invariant constructed earlier on $B_n$ is extended to $VB_n$. It is conjectered that this invariant is also complete.
@article{ZNSL_2003_299_a17,
     author = {V. O. Manturov},
     title = {On recognition of virtual braids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--286},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a17/}
}
TY  - JOUR
AU  - V. O. Manturov
TI  - On recognition of virtual braids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 267
EP  - 286
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a17/
LA  - ru
ID  - ZNSL_2003_299_a17
ER  - 
%0 Journal Article
%A V. O. Manturov
%T On recognition of virtual braids
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 267-286
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a17/
%G ru
%F ZNSL_2003_299_a17
V. O. Manturov. On recognition of virtual braids. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 267-286. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a17/

[1] P. Dehornoy, “From large cardinals to braids via distributive algebra”, J. Knot Theory Ram., 4 (1995), 33–79 | DOI | MR | Zbl

[2] R. P. Fenn, R. Rimányi, C. P. Rourke, “The braid-permutation group”, Topology, 36 (1997), 123–135 | DOI | MR | Zbl

[3] A. A. Gaifullin, V. O. Manturov, “On the recognition of braids”, J. Knot Theory Ram., 11 (2002), 1193–1209 | DOI | MR | Zbl

[4] M. N. Gusarov, M. Polyak, O. Viro, “Finite type invariants of classical and virtual knots”, Topology, 39 (2000), 1045–1068 | DOI | MR | Zbl

[5] V. O. Manturov, Lektsii po teorii uzlov i ikh invariantov, URSS, M., 2001

[6] V. Vershinin, “On homology of virtual braids and burau representation”, J. Knot Theory Ram., 10 (2001), 795–812 | DOI | MR | Zbl

[7] L. H. Kauffman, “Virtual knot theory”, European J. Combinatorics, 20 (1999), 662–690 | DOI | MR