On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 262-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that each convex planar fugure $K\subset\mathbb R^2$ contains a point $O$ such that the perimeter of $K$ computed with respect to the Minkowski distance function of the pair $(K,O)$ is at most 9. If $K$ is a triangle, then this estimate is sharp.
@article{ZNSL_2003_299_a16,
     author = {V. V. Makeev},
     title = {On estimating from above the perimeter of an asymmetric unit disk in the {Minkowski} plane},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--266},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 262
EP  - 266
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/
LA  - ru
ID  - ZNSL_2003_299_a16
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 262-266
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/
%G ru
%F ZNSL_2003_299_a16
V. V. Makeev. On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 262-266. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/

[1] H. Minkowski, Geometrie der Zahlen, Leipzig–Berlin, 1910

[2] A. I. Scherba, “Ob otsenke perimetra normiruyuschei figury na ploskosti Minkovskogo”, Tezisy dokladov 5-i mezhdunarodnoi konferentsii po geometrii i topologii pamyati A. V. Pogorelova, Cherkassy, 2003

[3] A. I. Scherba, “Ob otsenke perimetra edinichnogo kruga na ploskosti Minkovskogo”, Tr. Rubtsovskogo industrialnogo instituta, 2003, no. 12, 96–107 | Zbl

[4] Yu. G. Reshetnyak, “Odna ekstremalnaya zadacha iz teorii vypuklykh krivykh”, Uspekhi mat. nauk, 8:6 (1953), 125–126 | MR | Zbl

[5] D. Laugwitz, “Konvexe Mittelpunktsbereiche und normierte Raume”, Math. Z., 61 (1954), 235–244 | DOI | MR

[6] A. Besicovitch, “Measure of asymmetry of convex curves”, J. London Math. Soc., 23 (1945), 237–240 | DOI | MR

[7] V. V. Makeev, “Ob approksimatsii ploskikh sechenii vypuklogo tela”, Zap. nauchn. semin. POMI, 246, 1997, 174–183 | MR | Zbl