On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 262-266

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that each convex planar fugure $K\subset\mathbb R^2$ contains a point $O$ such that the perimeter of $K$ computed with respect to the Minkowski distance function of the pair $(K,O)$ is at most 9. If $K$ is a triangle, then this estimate is sharp.
@article{ZNSL_2003_299_a16,
     author = {V. V. Makeev},
     title = {On estimating from above the perimeter of an asymmetric unit disk in the {Minkowski} plane},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--266},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 262
EP  - 266
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/
LA  - ru
ID  - ZNSL_2003_299_a16
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 262-266
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/
%G ru
%F ZNSL_2003_299_a16
V. V. Makeev. On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 262-266. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/