On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 262-266
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that each convex planar fugure $K\subset\mathbb R^2$ contains a point $O$ such that the perimeter of $K$ computed with respect to the Minkowski distance function of the pair $(K,O)$ is at most 9. If $K$ is a triangle, then this estimate is sharp.
@article{ZNSL_2003_299_a16,
author = {V. V. Makeev},
title = {On estimating from above the perimeter of an asymmetric unit disk in the {Minkowski} plane},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {262--266},
publisher = {mathdoc},
volume = {299},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/}
}
TY - JOUR AU - V. V. Makeev TI - On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 262 EP - 266 VL - 299 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/ LA - ru ID - ZNSL_2003_299_a16 ER -
V. V. Makeev. On estimating from above the perimeter of an asymmetric unit disk in the Minkowski plane. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 262-266. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a16/