On affine diameters and chords of convex compacta
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 252-261
Voir la notice de l'article provenant de la source Math-Net.Ru
Existence theorems are proved for collections of affine diameters of a convex body that satisfy various additional conditions.
The area of a convex planar figure is estimated via the maximal length of a chord dividing the area of the figure in a given ratio.
@article{ZNSL_2003_299_a15,
author = {V. V. Makeev},
title = {On affine diameters and chords of convex compacta},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {252--261},
publisher = {mathdoc},
volume = {299},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a15/}
}
V. V. Makeev. On affine diameters and chords of convex compacta. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 252-261. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a15/