Modules of links with intersecting components
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 218-227

Voir la notice de l'article provenant de la source Math-Net.Ru

An $I$-link $K$ is the union of two $n$-spheres smoothly embedded in $S^{n+2}$ and transversally intersecting along a smoothly embedded $(n-2)$-sphere. The homologies of the universal Abelian cover of the exterior of $K$ regarded as modules over the group ring $\mathbb Z[\mathbb Z\oplus\mathbb Z]$ are studied.
@article{ZNSL_2003_299_a12,
     author = {T. V. Leikina},
     title = {Modules of links with intersecting components},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--227},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/}
}
TY  - JOUR
AU  - T. V. Leikina
TI  - Modules of links with intersecting components
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 218
EP  - 227
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/
LA  - ru
ID  - ZNSL_2003_299_a12
ER  - 
%0 Journal Article
%A T. V. Leikina
%T Modules of links with intersecting components
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 218-227
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/
%G ru
%F ZNSL_2003_299_a12
T. V. Leikina. Modules of links with intersecting components. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 218-227. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/