Modules of links with intersecting components
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 218-227
Voir la notice de l'article provenant de la source Math-Net.Ru
An $I$-link $K$ is the union of two $n$-spheres smoothly embedded in $S^{n+2}$ and transversally intersecting along a smoothly embedded $(n-2)$-sphere. The homologies of the universal Abelian cover of the exterior of $K$ regarded as modules over the group ring $\mathbb Z[\mathbb Z\oplus\mathbb Z]$ are studied.
@article{ZNSL_2003_299_a12,
author = {T. V. Leikina},
title = {Modules of links with intersecting components},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--227},
publisher = {mathdoc},
volume = {299},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/}
}
T. V. Leikina. Modules of links with intersecting components. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 218-227. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/