Modules of links with intersecting components
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 218-227
Cet article a éte moissonné depuis la source Math-Net.Ru
An $I$-link $K$ is the union of two $n$-spheres smoothly embedded in $S^{n+2}$ and transversally intersecting along a smoothly embedded $(n-2)$-sphere. The homologies of the universal Abelian cover of the exterior of $K$ regarded as modules over the group ring $\mathbb Z[\mathbb Z\oplus\mathbb Z]$ are studied.
@article{ZNSL_2003_299_a12,
author = {T. V. Leikina},
title = {Modules of links with intersecting components},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--227},
year = {2003},
volume = {299},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/}
}
T. V. Leikina. Modules of links with intersecting components. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 218-227. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a12/
[1] M. Kervaire, “Les noeuds de dimensions superieures”, Bull. Soc. Math. France, 93 (1965), 225–271 | MR | Zbl
[2] V. L. Kobelskii, “Moduli dvukhkomponentnykh zatseplenii korazmernosti, 2”, Algebra i analiz, 1:3 (1989), 160 | MR
[3] J. Levine, “Knot modules”, Trans. AMS, 229 (1977), 1–50 | DOI | MR | Zbl
[4] E. Ogasa, The intersection of spheres in a sphere and a new geometric meaning of Arf invariant, , 2000 arXiv: /math/0003089 | MR
[5] E. Ogasa, “Intersectional pairs of $n$-knots, local moves of $n$-knots, and their associated invariants of $n$-knots”, Math. Res. Let., 5 (1998), 577–582 | MR | Zbl
[6] E. Ogasa, On the intersection of spheres in a sphere II (high dimensional case), University of Tokyo, preprint, 1995