Patchworking singularities $A_\mu$ and $D_\mu$ and meanders of their smoothing
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 193-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let an algebraic curve $f$ have a singular point of type $A_{\mu}$ or $D_{\mu}$. Let $\tilde{f}$ be the curve obtained as a result of smoothing the singular point of the curve $f$. In this paper we study the local maximal meanders appearing under $M$-smoothing in a neighborhood of the singular point. A local maximal meander means that the number of real points of the intersection of the curve $\tilde{f}$ with a coordinate axis in the neighborhood is maximal and the points belong to one of the components of $\tilde{f}$; and an $M$-smoothing means that the number of components of the curve $\tilde{f}$, which appear in the neighborhood under the smoothing, is also maximal.
@article{ZNSL_2003_299_a11,
     author = {A. B. Korchagin and D. E. Smith},
     title = {Patchworking singularities~$A_\mu$ and~$D_\mu$ and meanders of their smoothing},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--217},
     year = {2003},
     volume = {299},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a11/}
}
TY  - JOUR
AU  - A. B. Korchagin
AU  - D. E. Smith
TI  - Patchworking singularities $A_\mu$ and $D_\mu$ and meanders of their smoothing
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 193
EP  - 217
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a11/
LA  - en
ID  - ZNSL_2003_299_a11
ER  - 
%0 Journal Article
%A A. B. Korchagin
%A D. E. Smith
%T Patchworking singularities $A_\mu$ and $D_\mu$ and meanders of their smoothing
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 193-217
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a11/
%G en
%F ZNSL_2003_299_a11
A. B. Korchagin; D. E. Smith. Patchworking singularities $A_\mu$ and $D_\mu$ and meanders of their smoothing. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 193-217. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a11/

[1] V. I. Arnold, “Meanders”, Kvant, 1991, no. 3, 11–14

[2] L. Brusotti, “Nuovi metodi costruttivi di curve piane d'ordine assegnato, dotate del massimo numero di circuiti. Part I–VI”, Rend. Ist. Lombardo, Ser. $II^a$, 47 (1914), 489–504; 47 (1914), 797–811; 48 (1915), 182–196; 49 (1916), 495–510 ; 49 (1916), 577–588 ; 49 (1916), 905–919 | Zbl

[3] A. H. Durfee, “Fifteen characterizations of rational double points and simple critical points”, L'Enseign. Math., 25 (1979), 131–163 | MR

[4] D. A. Gudkov, “The topology of real projective algebraic varieties”, Uspekhi Mat. Nauk, 29:4 (1974), 3–79 | MR | Zbl

[5] A. Harnack, “Über die Vieltheiligkeit der ebenen algebraischen Kurven”, Math. Ann., 10 (1876), 189–198 | DOI | MR

[6] D. Hilbert, “Über die reelleh Züge algebraischen Curven”, Math. Ann., 38 (1891), 115–138 | DOI | MR

[7] V. M. Kharlamov, O. Ya. Viro, “Extensions of the Gudkov–Rokhlin congruence”, Lect. Notes in Math., 1346, Springer-Verlag, New York, 1988, 357–406 | MR

[8] O. Ya. Viro, “Gluing of plane real algebraic curves and constructions of curves of degrees, 6 and 7”, Lect. Notes in Math., 1060, Springer–Verlag, New York, 1984, 187–200 | MR

[9] O. Ya. Viro, “Gluing algebraic hypersurfaces, removing singularities, and construction of curves”, Proc. Leningrad Int. Conf., Leningrad, 1983, 149–197 | Zbl