About frameworks restorable by one stress
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 169-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Hinged constructions with pinned joints admitting integral stresses in $\mathbb R^d$ are studied. A conjecture about the existence of restoring stress for a framework in $\mathbb R^1$ restorable by its internal stress space is proved. A sufficient condition for the existence of a restoring stress in the case of arbitrary dimension is given. Properties of the set of frameworks restorable by an internal stress are established. New problems are formulated.
@article{ZNSL_2003_299_a10,
     author = {M. D. Kovalev},
     title = {About frameworks restorable by one stress},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--192},
     year = {2003},
     volume = {299},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a10/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - About frameworks restorable by one stress
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 169
EP  - 192
VL  - 299
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a10/
LA  - ru
ID  - ZNSL_2003_299_a10
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T About frameworks restorable by one stress
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 169-192
%V 299
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a10/
%G ru
%F ZNSL_2003_299_a10
M. D. Kovalev. About frameworks restorable by one stress. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 169-192. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a10/

[1] M. D. Kovalev, “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN, Ser. mat., 58:1 (1994), 45–70 | Zbl

[2] M. D. Kovalev, “O vosstanovimosti sharnirnikov po vnutrennim napryazheniyam”, Izv. RAN, Ser. mat., 61:4 (1997), 37–66 | MR | Zbl

[3] N. White, W. Whiteley, “The algebraic geometry of stresses in frameworks”, SIAM J. Alg. Discrete Math., 4 (1983), 481–511 | DOI | MR | Zbl

[4] R. Connelly, “Rigidity and energy”, Invent. Math., 66 (1982), 11–33 | DOI | MR | Zbl

[5] S. Smeil, “Globalnyi analiz i ekonomika 1, optimum Pareto i obobschenie teoremy Morsa”, UMN, 27:3 (1972), 177–187 | MR

[6] A. I. Kostrikin, Vvedenie v algebru, Nauka, M., 1977 | MR | Zbl

[7] H. Crapo, “Invariant-theoretic methods in scene analysis and structural mechanics”, J. Symbolic Computation, 11 (1991), 523–548 | DOI | MR | Zbl