A remark on the $sl_2$ approximation of the Kontsevich integral of the unknot
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 30-37
Cet article a éte moissonné depuis la source Math-Net.Ru
The Kontsevich integral of a knot $K$ is a sum $I(K)=1+\sum_{n=1}^\infty h^n\sum_{D\in A_n}a_D D$ over all chord diagrams with suitable coefficients. Here $A_n$ is the space of chord diagrams with $n$ chords. A simple explicit formula for the coefficients $a_D$ is not known even for the unknot. Let $E_1,E_2,\dots$ be elements of $A=\bigoplus_{n}A_n$. Say that the sum $I'(K)=1+\sum_{n=1}^\infty h^n E_n$ is an $sl_2$ approximation of the Kontsevich integral if the values of the $sl_2$ weight system $W_{sl_2}$ on both sums are equal: $W_{sl_2}(I(K))=W_{sl_2}(I'(K))$. For any natural n fix points $a_1,\dots,a_2n$ on a circle. For any permutation $\sigma\in S_{2n}$ of $2n$ elements, one defines the chord diagram $D(\sigma)$ with $n$ chords as the diagram with chords formed by pairs $(a_{\sigma(2i-1)} and a_{\sigma(2i)})$, $i=1,\dots,n$. It is shown that $$ 1+\sum_{n=1}^\infty\frac{h^{2n}}{2^n(2n)!(2n+1)!}\sum_{\sigma\in S_{2n}}D(\sigma) $$ is an $sl_2$ approximation of the Kontsevich integral of the unknot.
@article{ZNSL_2003_299_a1,
author = {A. N. Varchenko and S. Tyurina},
title = {A~remark on the~$sl_2$ approximation of the {Kontsevich} integral of the unknot},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--37},
year = {2003},
volume = {299},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/}
}
A. N. Varchenko; S. Tyurina. A remark on the $sl_2$ approximation of the Kontsevich integral of the unknot. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 30-37. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/
[1] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[2] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. Thurston, Wheels, wheeling, and the Kontsevich integral of the unknot, arXiv: /q-alg/9703025 | MR
[3] S. Chmutov, A. Varchenko, “Remarks on the Vassiliev knot invariants coming from $sl_2$”, Topology, 36 (1996), 153–178 | DOI | MR
[4] M. Kontsevich, “Vassiliev's knot invariants”, Adv. in Sov. Math., 16 (1993), 137–150 | MR | Zbl
[5] T. Q. T. LE, J. Murakami, “Parallel version of the universal Vassiliev–Kontsevich invariant”, J. Pure and Appl. Alg., 121 (1997), 271–291 | DOI | MR | Zbl
[6] D. Thurston, Wheeling: a diagrammatic analogue of the Duflo isomorphism, Ph.D. thesis