A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 30-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Kontsevich integral of a knot $K$ is a sum $I(K)=1+\sum_{n=1}^\infty h^n\sum_{D\in A_n}a_D D$ over all chord diagrams with suitable coefficients. Here $A_n$ is the space of chord diagrams with $n$ chords. A simple explicit formula for the coefficients $a_D$ is not known even for the unknot. Let $E_1,E_2,\dots$ be elements of $A=\bigoplus_{n}A_n$. Say that the sum $I'(K)=1+\sum_{n=1}^\infty h^n E_n$ is an $sl_2$ approximation of the Kontsevich integral if the values of the $sl_2$ weight system $W_{sl_2}$ on both sums are equal: $W_{sl_2}(I(K))=W_{sl_2}(I'(K))$.
For any natural n fix points $a_1,\dots,a_2n$ on a circle. For any permutation $\sigma\in S_{2n}$ of $2n$ elements, one defines the chord diagram $D(\sigma)$ with $n$ chords as the diagram with chords formed by pairs $(a_{\sigma(2i-1)} and a_{\sigma(2i)})$, $i=1,\dots,n$.
It is shown that
$$
1+\sum_{n=1}^\infty\frac{h^{2n}}{2^n(2n)!(2n+1)!}\sum_{\sigma\in S_{2n}}D(\sigma) 
$$
is an $sl_2$ approximation of the Kontsevich integral of the unknot.
			
            
            
            
          
        
      @article{ZNSL_2003_299_a1,
     author = {A. N. Varchenko and S. Tyurina},
     title = {A~remark on the~$sl_2$ approximation of the {Kontsevich} integral of the unknot},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--37},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/}
}
                      
                      
                    TY - JOUR AU - A. N. Varchenko AU - S. Tyurina TI - A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 30 EP - 37 VL - 299 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/ LA - ru ID - ZNSL_2003_299_a1 ER -
A. N. Varchenko; S. Tyurina. A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 30-37. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/
