A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 30-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kontsevich integral of a knot $K$ is a sum $I(K)=1+\sum_{n=1}^\infty h^n\sum_{D\in A_n}a_D D$ over all chord diagrams with suitable coefficients. Here $A_n$ is the space of chord diagrams with $n$ chords. A simple explicit formula for the coefficients $a_D$ is not known even for the unknot. Let $E_1,E_2,\dots$ be elements of $A=\bigoplus_{n}A_n$. Say that the sum $I'(K)=1+\sum_{n=1}^\infty h^n E_n$ is an $sl_2$ approximation of the Kontsevich integral if the values of the $sl_2$ weight system $W_{sl_2}$ on both sums are equal: $W_{sl_2}(I(K))=W_{sl_2}(I'(K))$. For any natural n fix points $a_1,\dots,a_2n$ on a circle. For any permutation $\sigma\in S_{2n}$ of $2n$ elements, one defines the chord diagram $D(\sigma)$ with $n$ chords as the diagram with chords formed by pairs $(a_{\sigma(2i-1)} and a_{\sigma(2i)})$, $i=1,\dots,n$. It is shown that $$ 1+\sum_{n=1}^\infty\frac{h^{2n}}{2^n(2n)!(2n+1)!}\sum_{\sigma\in S_{2n}}D(\sigma) $$ is an $sl_2$ approximation of the Kontsevich integral of the unknot.
@article{ZNSL_2003_299_a1,
     author = {A. N. Varchenko and S. Tyurina},
     title = {A~remark on the~$sl_2$ approximation of the {Kontsevich} integral of the unknot},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--37},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/}
}
TY  - JOUR
AU  - A. N. Varchenko
AU  - S. Tyurina
TI  - A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 30
EP  - 37
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/
LA  - ru
ID  - ZNSL_2003_299_a1
ER  - 
%0 Journal Article
%A A. N. Varchenko
%A S. Tyurina
%T A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 30-37
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/
%G ru
%F ZNSL_2003_299_a1
A. N. Varchenko; S. Tyurina. A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 30-37. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a1/