On random broken lines weakly converging to fractional Ornstein–Uhlenbeck process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 134-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The behavior of sequences of continuous broken lines corresponding to sums of stationary sequences is studied. Conditions of weak convergence of distributions of these broken lines to Gaussian processes of Ornstein–Uhlenbeck type and fractional Brownian movement type are established.
@article{ZNSL_2003_298_a7,
     author = {A. V. Liber and O. V. Rusakov},
     title = {On random broken lines weakly converging to fractional {Ornstein{\textendash}Uhlenbeck} process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--149},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a7/}
}
TY  - JOUR
AU  - A. V. Liber
AU  - O. V. Rusakov
TI  - On random broken lines weakly converging to fractional Ornstein–Uhlenbeck process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 134
EP  - 149
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a7/
LA  - ru
ID  - ZNSL_2003_298_a7
ER  - 
%0 Journal Article
%A A. V. Liber
%A O. V. Rusakov
%T On random broken lines weakly converging to fractional Ornstein–Uhlenbeck process
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 134-149
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a7/
%G ru
%F ZNSL_2003_298_a7
A. V. Liber; O. V. Rusakov. On random broken lines weakly converging to fractional Ornstein–Uhlenbeck process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 134-149. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a7/

[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] Yu. A. Davydov, “Printsip invariantnosti dlya statsionarnykh protsessov”, Teor. Ver. Prim., XV:3 (1970), 498–509 | MR | Zbl

[3] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[4] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1984

[5] O. E. Barndorff-Nielsen, Victor Perez-Abreu, Stationary and Selfsimilar Processes Driven by Levy Processes, MaPhySto Research Report No 1, University of Aarhus, Denmark, 1998

[6] J. W. Lamperti, “Semi-stable Stochastic Processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl

[7] M. Jakobsen, M. York, Multi-self-similar Markov Processes on $\mathbb R_{+}^{n}$ and their Lamperti Representation, MaPhySto report, August 1 (2002), Aarhus

[8] F. Comte, E. Renault, “Long Memory in Continuous-Time Stochastic Volatility Model”, Mathematical Finance, 8:4, 291–323 | DOI | MR | Zbl