On approximation of the sample by a Poisson point process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 111-125
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that the results obtained earlier for the rate of approximation of convolutions of probability distributions by accompanying infinitely divisible laws may be interpreted as estimates of the rate of approximation of the sample by a Poisson point process. The most interesting results are obtained for a scheme of rare events.
@article{ZNSL_2003_298_a5,
     author = {A. Yu. Zaitsev},
     title = {On approximation of the sample by {a~Poisson} point process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--125},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a5/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - On approximation of the sample by a Poisson point process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 111
EP  - 125
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a5/
LA  - ru
ID  - ZNSL_2003_298_a5
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T On approximation of the sample by a Poisson point process
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 111-125
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a5/
%G ru
%F ZNSL_2003_298_a5
A. Yu. Zaitsev. On approximation of the sample by a Poisson point process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 111-125. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a5/

[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teor. veroyatn. i ee primen., 25 (1980), 225–246 | MR | Zbl

[2] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova, I”, Teor. veroyatn. i ee primen., 26 (1981), 225–245 | MR | Zbl

[3] T. V. Arak, “Utochnenie nizhnei otsenki dlya skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova”, Teor. veroyatn. i ee primen., 27 (1982), 767–772 | MR | Zbl

[4] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Trudy MIAN, 174, 1986 | MR | Zbl

[5] A. D. Barbour, L. H. Y. Chen and W. L. Loh, “Compound Poisson approximation for nonnegative random variables via Stein's method”, Ann. Probab., 20 (1992), 1843–1866 | DOI | MR | Zbl

[6] A. D. Barbour and P. Hall, “On the rate of Poisson convergence”, Math. Proc. Camb. Phil. Soc., 95 (1984), 473–480 | DOI | MR | Zbl

[7] A. D. Barbour, L. Holst and S. Jansson, Poisson Approximation, Oxford University Press, 1992 | MR | Zbl

[8] A. D. Barbour and O. Chryssaphinou, “Compound Poisson approximation: a user's guide”, Ann. Appl. Probab., 11 (2002), 964–1002 | MR

[9] A. D. Barbour and V. Čekanavičius, “Total variation asymptotics for sums of independent integer random variables”, Ann. Probab., 30 (2002), 509–545 | DOI | MR | Zbl

[10] V. Bentkus, F. Götze and A. Yu. Zaitsev, “Approximation of quadratic forms of independent random vectors by accompanying laws”, Teor. veroyatn. i ee primen., 42 (1997), 308–335 | MR | Zbl

[11] I. Borisov, Moment inequalities connected with accompanying Poisson laws in Abelian groups | MR

[12] I. S. Borisov, “Puassonovskaya approksimatsiya protsessa chastnykh summ v banakhovykh prostranstvakh”, Sib. Matem. Zhurnal, 37:4 (1996), 723–731 | MR | Zbl

[13] V. Chyakanavichyus, “Approksimatsiya soprovozhdayuschimi zakonami i asimptoticheskie razlozheniya, I”, Litovskii Matem. Zhurn., 29 (1989), 171–178 | MR | Zbl

[14] V. Čekanavičius, “Bergström-type asymptotic expansions in the first Kolmogorov's uniform limit theorem”, Probab. Theory and Math. Statist., eds. B. Grigelionis et al., VSP/TEV, 1994, 223–238 | MR | Zbl

[15] V. Čekanavičius, “On multivariate Le Cam theorem and compound Poisson measures”, Statist. Probab. Letters, 28 (1996), 33–39 | DOI | MR

[16] V. Čekanavičius, Y. H. Wang, “Compound Poisson approximation for sums of discrete nonlattice random variables”, Adv. Appl. Probab., 35 (2003), 228–250 | DOI | MR

[17] L. H. Y. Chen, “On the convergence of Poisson binomial to Poisson distribution”, Ann. Probab., 2 (1974), 178–180 | DOI | MR | Zbl

[18] P. Deheuvels, D. Pfeifer, “Poisson approximation of multinomial distributions and point processes”, J. Multivar. Anal., 25 (1988), 65–89 | DOI | MR | Zbl

[19] H. U. Gerber, “Error bounds for compound Poisson approximation”, Insurance: Mathematics and Economics, 3 (1984), 191–194 | DOI | MR | Zbl

[20] H. U. Gerber, An introduction to mathematical risk theory, Huebner Foundation Monograph, 8, University of Pennsylvania Wharton School S. S. Huebner Foundation for Insurance Education, Philadelphia, Pa., 1979 | MR | Zbl

[21] E. Giné, D. M. Mason, A. Yu. Zaitsev, “The $L_{1}$-norm density estimator process”, Ann. Probab., 31 (2003), 719–768 | DOI | MR | Zbl

[22] C. Hipp, “Approximation for the aggregate claim distributions by compound Poisson distributions”, Insurance: Mathematics and Economics, 4 (1985), 227–232 | DOI | MR | Zbl

[23] C. Hipp, “Improved approximations of aggregate claim distributions in the individual model”, ASTIN Bull., 16 (1987), 89–100 | DOI

[24] I. A. Ibragimov, E. L. Presman, “O sblizhenii raspredelenii summ nezavisimykh sluchainykh velichin s soprovozhdayuschimi zakonami”, Teor. Veroyatn. i ee Primen., 18 (1973), 753–766 | MR | Zbl

[25] I. Kerstan, K. Mattes, I. Mekke, Bezgranichno delimye tochechnye protsessy, Nauka, Moskva, 1982 | MR | Zbl

[26] A. N. Kolmogorov, “Nekotorye raboty poslednikh let v oblasti teorii veroyatnostei”, Vestnik MGU, 7:10 (1953), 29–38 | Zbl

[27] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teor. Veroyatn. i ee Primen., 1 (1956), 426–436 | MR

[28] A. N. Kolmogorov, “O priblizhenii raspredelenii summ nezavisimykh slagaemykh neogranichenno delimymi raspredeleniyami”, Trudy Moskovsk. Matem. Ob-va, 12, 1963, 437–451 | MR

[29] L. Le Cam, “An approximation theorem for Poisson binomial distribution”, Pacific J. Math., 10 (1960), 1181–1197 | MR | Zbl

[30] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace (anniversary volume), Springer, Berlin, 1965, 179–202 | MR

[31] L. Le Cam, Asymptotic methods in statistical decision theory, Springer, New York, 1986 | MR

[32] R. Michel, “An improved error bound for the compound Poisson approximation of a nearly homogeneous portfolio”, ASTIN Bull., 17 (1988), 165–169 | DOI

[33] S. V. Nagaev, Concentration functions and approximation with infinitely divisible laws in Hilbert space, Diskrete Strukturen in der Mathematik, Preprint 90–094, Bielefeld, 1990

[34] S. V. Nagaev, “Funktsii kontsentratsii i tochnost priblizheniya bezgranichno delimymi zakonami v gilbertovom prostranstve”, Doklady RAN, 359 (1998), 461–463 | MR | Zbl

[35] H. H. Panjer, G. E. Willmot, “Compound Poisson models in actuarial risk theory”, J. Econometrics, 23 (1983), 63–76 | DOI | MR | Zbl

[36] E. L. Presman, “O mnogomernom variante ravnomernoi predelnoi teoremy Kolmogorova”, Teor. Veroyatn. i ee Primen., 18 (1973), 396–402 | MR | Zbl

[37] Yu. V. Prokhorov, “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi Matem. Nauk, 8:3 (1953), 135–142 | MR

[38] Yu. V. Prokhorov, “O summakh nezavisimykh sluchainykh velichin”, Doklady AN SSSR, 105 (1955), 645–647 | MR

[39] R. Pyke, G. R. Shorack, “Weak convergence of a two-sample empirical process and a new approach to Chernoff–Savage theorems”, Ann. Math. Statist., 39 (1968), 755–771 | DOI | MR | Zbl

[40] S. T. Rachev, L. Rüschendorf, “Approximation of sums by compound Poisson distributions with respect to stop-loss distances”, Adv. Appl. Probab., 22 (1990), 350–374 | DOI | MR | Zbl

[41] B. Roos, “Stein–Chen method for compound Poisson approximation: the coupling approach”, Probability Theory and Mathematical Statistics, eds. B. Grigelionis et al., VSP/TEV, 1994, 645–660 | MR | Zbl

[42] B. Roos, “Sharp constants in the Poisson approximation”, Statist. Probab. Letters, 52 (2001), 155–168 | DOI | MR | Zbl

[43] A. Yu. Zaitsev, “Nekotorye svoistva $n$-kratnykh svertok raspredelenii”, Teor. Veroyatn. i ee Primen., 26 (1981), 152–156 | MR

[44] A. Yu. Zaitsev, “O tochnosti approksimatsii raspredelenii summ nezavisimykh sluchainykh velichin otlichnykh ot nulya s maloi veroyatnostyu, s pomoschyu soprovozhdayuschikh zakonov”, Teor. Veroyatn. i ee Primen., 28 (1983), 625–636 | MR

[45] A. Yu. Zaitsev, “O ravnomernoi approksimatsii funktsii raspredeleniya summ nezavisimykh sluchainykh velichin”, Teor. Veroyatn. i ee Primen., 32 (1987), 45–52 | MR

[46] A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probab. Theory Related Fields, 79 (1988), 175–200 | DOI | MR | Zbl

[47] A. Yu. Zaitsev, “Mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teor. Veroyatn. i ee Primen., 34:1 (1989), 128–151 | MR | Zbl

[48] A. Yu. Zaitsev, “Approksimatsiya svertok mnogomernykh simmetrichnykh raspredelenii soprovozhdayuschimi zakonami”, Zap. Nauchn. Semin. LOMI, 177, 1989, 55–72 | MR

[49] A. Yu. Zaitsev, “Ob odnom klasse neravnomernykh otsenok v mnogomernykh predelnykh teoremakh”, Zap. Nauchn. Semin. LOMI, 184, 1990, 92–105 | MR

[50] A. Yu. Zaitsev, “Approksimatsiya svertok veroyatnostnykh raspredelenii bezgranichno delimymi zakonami pri oslablennykh momentnykh ogranicheniyakh”, Zap. Nauchn. Semin. POMI, 194, 1992, 79–90

[51] A. Yu. Zaitsev, “Neustoichivost obrascheniya preobrazovaniya Radona”, Zap. Nauchn. Semin. POMI, 216, 1994, 76–85 | MR

[52] A. Yu. Zaitsev, “Approksimatsiya svertok soprovozhdayuschimi zakonami pri suschestvovanii momentov nevysokogo poryadka”, Zap. Nauchn. Semin. POMI, 228, 1996, 135–141 | MR | Zbl

[53] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional central limit theorem”, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 107–116 | MR | Zbl