A Berry–Esseen bound for $U$-statistics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 54-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The rate of convergence in the central limit theorem for non-degenerate $U$-statistics of $n$ independent random variables is investigated under minimal sufficient moment conditions on canonical functions of Hoeffding representation.
@article{ZNSL_2003_298_a3,
     author = {L. V. Gadasina},
     title = {A~Berry{\textendash}Esseen bound for $U$-statistics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--79},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a3/}
}
TY  - JOUR
AU  - L. V. Gadasina
TI  - A Berry–Esseen bound for $U$-statistics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 54
EP  - 79
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a3/
LA  - ru
ID  - ZNSL_2003_298_a3
ER  - 
%0 Journal Article
%A L. V. Gadasina
%T A Berry–Esseen bound for $U$-statistics
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 54-79
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a3/
%G ru
%F ZNSL_2003_298_a3
L. V. Gadasina. A Berry–Esseen bound for $U$-statistics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 54-79. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a3/

[1] I. B. Alberink, A Berry-Esseen bound for $U$-statistics in non-i.i.d. case, Preprint 98-057 SBF 343, Universität Bielefeld, 1998, 1–12 | MR | Zbl

[2] V. Bentkus, M. Bloznelis, F. Götze, “A Berry-Esseen Bound for Student's Statistics in Non-I.I.D. Case”, Journal of Theoretical Probability, 9 (1996), 765–796 | DOI | MR | Zbl

[3] V. Bentkus, F. Götze, R. Zitikis, “Lower estimates of the convergence rate for $U$-statistics”, Ann. Probab, 22:4 (1994), 1707–1714 | DOI | MR | Zbl

[4] Yu. V. Borovskikh, “O normalnoi approksimatsii $U$-statistik”, Teor. ver. i ee prim., 45:3 (2000), 469–488 | MR | Zbl

[5] Yu. V. Borovskikh, V. S. Korolyuk, Teoriya $U$-statistik, Naukova dumka, Kiev, 1989 | MR

[6] Yu. V. Borovskikh, V. S. Korolyuk, Martingale Approximation, VSP, Utreht, The Netherlands, 1997 | MR

[7] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984

[8] K. O. Friedrich, “A Berry-Esseen bound for functions of independent random variables”, Ann. Statist., 17:1 (1989), 170–183 | DOI | MR | Zbl

[9] M. Ghosh, R. Dasgupta, “Berry-Esseen theorem for $U$-statistics in the non i.i.d. case”, Nonparametric statistical inference, Colloguia mathematica socieatatis János Bolyai, 32, North Holland, Amsterdam, 1982, 293–313 | MR

[10] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl

[11] Sh. A. Khashimov, G. R. Abdurakhmanov, “Ob otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme dlya obobschennykh $U$-statistik”, Teor. ver. i ee prim., 43:1 (1998), 69–81 | MR | Zbl

[12] T. L. Malevich, G. R. Abdurakhmanov, “Tsentralnaya predelnaya teorema dlya obobschennykh (neodnorodnykh) $U$-statistik ot razlichno raspredelennykh sluchainykh velichin”, Izv. AN UzSSR, ser. fiz.-mat. nauk, 2 (1986), 28–33 | MR | Zbl