Rate of convergence of increments for random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 304-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of this paper is to obtain exact convergence rate in the limit theorems for maximal increments of random fields \begin{align} S_{N,a_{N}}&=\max\Bigl\{\sum _{i<k\leq j}X_{k}:|j|\leq N,|j-i|\leq a_{N}\Bigr\},\notag\\ S^{\star}_{N,a_{N}}&=\max\Bigl\{\sum _{i<k\leq j}X_{k}:|j|\leq N,| j-i|=a_{N}\Bigr\},\notag \end{align} where $N\in\mathbb{N}$ and $a_{N}=c\log N+\lambda\log_{2} N+o(\log_{2} N)$, $c>c_{0}$, $\lambda\in\mathbb{R}$, $X_{n}$ is a sequence of multi-dimension indexed i.i.d. centered random variables having a finite moment generating function in right neighborhood of zero, $|n|$ is defined by multiplying of coordinates.
@article{ZNSL_2003_298_a17,
     author = {O. E. Shcherbakova},
     title = {Rate of convergence of increments for random fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {304--315},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a17/}
}
TY  - JOUR
AU  - O. E. Shcherbakova
TI  - Rate of convergence of increments for random fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 304
EP  - 315
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a17/
LA  - ru
ID  - ZNSL_2003_298_a17
ER  - 
%0 Journal Article
%A O. E. Shcherbakova
%T Rate of convergence of increments for random fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 304-315
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a17/
%G ru
%F ZNSL_2003_298_a17
O. E. Shcherbakova. Rate of convergence of increments for random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 304-315. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a17/

[1] E. K. Titchmarsh, Teoriya dzeta-funktsii, Merkurii-PRESS, 2000

[2] K. Prakhar, Raspredelenie prostykh chisel, Mir, Moskva, 1967 | MR

[3] P. Deheuvels, L. Devroye, J. Lynch, “Exact convergence rate in the limit theorems of Erdös–Rényi and Shepp”, Ann. of Probab., 14:2 (1986), 209–223 | DOI | MR | Zbl

[4] A. Frolov, A. Martikainen, J. Steinebach, Erdös–Rényi–Shepp type laws in the non-i.i.d. case, Philipps-Universität Marburg, Bericht No 42, Fachbereich Mathematik, 1966

[5] J. Steinebach, W. Pfuhl, “On precise asymptotics for Erdös–Rényi increments of random fields”, Pub. Inst. Stat. Univ., 33:2 (1988), 49–66