@article{ZNSL_2003_298_a16,
author = {E. Yu. Shmileva},
title = {Small ball probability for centered {Poisson} process of high intensity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {280--303},
year = {2003},
volume = {298},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a16/}
}
E. Yu. Shmileva. Small ball probability for centered Poisson process of high intensity. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 280-303. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a16/
[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[2] A. A. Borovkov, A. A. Mogulskii, “O veroyatnostyakh malykh uklonenii dlya sluchainykh protsessov”, Trudy Inst. Matem. SO AN SSSR, 13, 1989, 147–168 | MR | Zbl
[3] P. Deovels, M. A. Lifshits, “Veroyatnosti popadaniya tsentrirovannogo puassonovskogo protsessa v smeschennye malye shary”, Zap. nauchn. semin. POMI, 278, 2001, 63–85 | MR
[4] I. Kerstan, M. Mattes, I. Mekke, Bezgranichno delimye tochechnye protsessy, Nauka, M., 1982 | MR | Zbl
[5] M. A. Lifshits, E. Yu. Shmileva, “Puassonovskie mery, kvaziinvariantnye otnositelno multiplikativnykh preobrazovanii”, Teoriya veroyatnostei i ee primeneniya, 46:4 (2001), 697–712 | MR | Zbl
[6] A. A. Mogulskii, “Malye ukloneniya v prostranstve traektorii”, Teoriya veroyatn. i ee primen., 19 (1974), 755–765 | MR
[7] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964 | MR | Zbl
[8] A. de Acosta, “Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm”, Ann. Probab., 11 (1983), 78–101 | DOI | MR | Zbl
[9] P. Bártfai, “Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunction aus den mit Fehlern behafteten Daten einer einzigen Realisation”, Studia Sci. Math. Hungar., 1 (1966), 161–168 | MR | Zbl
[10] Ph. Berthet, “On the rate of clustering to the Strassen set for increments of the uniform empirical process”, J. Theor. Prob., 10 (1997), 557–579 | DOI | MR | Zbl
[11] Ph. Berthet, Vitesses de recouvrement dans les lois fonctionnelles du logarithme itéré pour les incréments du processus empirique uniforme avec applications statistiques, Thése du doctorat de 1'Université Paris VI, 1996
[12] R. Cameron, W. T. Martin, “Transformation of Wiener integrals under translation”, Ann. Math., 45 (1944), 386–396 | DOI | MR | Zbl
[13] K. L. Chung, “On the maximum partial sums of sequences of independent random, variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl
[14] P. Deheuvels, “Chung-type functional laws of the iterated logarithm for tail empirical processes”, Ann. Inst. Henri Poincare, 36:5 (2000), 583–616 | DOI | MR | Zbl
[15] P. Deheuvels, D. M. Mason, “Nonstandart functional laws of the iterated logarithm for tail empirical and quantile processes”, Ann. Probab., 18 (1990), 1693–1722 | DOI | MR | Zbl
[16] K. Grill, “A lim inf result in Strassen's law of the iterated logarithm”, Probab. Theor. Rel. Fields, 89 (1991), 149–157 | DOI | MR | Zbl
[17] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF. I”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 32 (1975), 111–131 | DOI | MR | Zbl
[18] J. Komlós, P. Major, G. Tusnady, “An approximation of partial sums of independent RV'-s and the sample DF. II”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 34 (1976), 34–58 | DOI | MR | Zbl
[19] K. Sato, Levi processes and infinitely divisible distributions, Cambridge University Press, 1999 | MR