Small ball probability for centered Poisson process of high intensity
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 280-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the limiting behavior of the probability with which the path of a centered Poisson process of high intensity gets into a small ball with a receding center. The results of this paper are restricted to the simplest case where the variation of the shift function (center of the ball) is finite. The estimates are obtained under the optimal conditions for the intensity of the process.
@article{ZNSL_2003_298_a16,
     author = {E. Yu. Shmileva},
     title = {Small ball probability for centered {Poisson} process of high intensity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {280--303},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a16/}
}
TY  - JOUR
AU  - E. Yu. Shmileva
TI  - Small ball probability for centered Poisson process of high intensity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 280
EP  - 303
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a16/
LA  - ru
ID  - ZNSL_2003_298_a16
ER  - 
%0 Journal Article
%A E. Yu. Shmileva
%T Small ball probability for centered Poisson process of high intensity
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 280-303
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a16/
%G ru
%F ZNSL_2003_298_a16
E. Yu. Shmileva. Small ball probability for centered Poisson process of high intensity. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 280-303. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a16/

[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] A. A. Borovkov, A. A. Mogulskii, “O veroyatnostyakh malykh uklonenii dlya sluchainykh protsessov”, Trudy Inst. Matem. SO AN SSSR, 13, 1989, 147–168 | MR | Zbl

[3] P. Deovels, M. A. Lifshits, “Veroyatnosti popadaniya tsentrirovannogo puassonovskogo protsessa v smeschennye malye shary”, Zap. nauchn. semin. POMI, 278, 2001, 63–85 | MR

[4] I. Kerstan, M. Mattes, I. Mekke, Bezgranichno delimye tochechnye protsessy, Nauka, M., 1982 | MR | Zbl

[5] M. A. Lifshits, E. Yu. Shmileva, “Puassonovskie mery, kvaziinvariantnye otnositelno multiplikativnykh preobrazovanii”, Teoriya veroyatnostei i ee primeneniya, 46:4 (2001), 697–712 | MR | Zbl

[6] A. A. Mogulskii, “Malye ukloneniya v prostranstve traektorii”, Teoriya veroyatn. i ee primen., 19 (1974), 755–765 | MR

[7] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964 | MR | Zbl

[8] A. de Acosta, “Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm”, Ann. Probab., 11 (1983), 78–101 | DOI | MR | Zbl

[9] P. Bártfai, “Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunction aus den mit Fehlern behafteten Daten einer einzigen Realisation”, Studia Sci. Math. Hungar., 1 (1966), 161–168 | MR | Zbl

[10] Ph. Berthet, “On the rate of clustering to the Strassen set for increments of the uniform empirical process”, J. Theor. Prob., 10 (1997), 557–579 | DOI | MR | Zbl

[11] Ph. Berthet, Vitesses de recouvrement dans les lois fonctionnelles du logarithme itéré pour les incréments du processus empirique uniforme avec applications statistiques, Thése du doctorat de 1'Université Paris VI, 1996

[12] R. Cameron, W. T. Martin, “Transformation of Wiener integrals under translation”, Ann. Math., 45 (1944), 386–396 | DOI | MR | Zbl

[13] K. L. Chung, “On the maximum partial sums of sequences of independent random, variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl

[14] P. Deheuvels, “Chung-type functional laws of the iterated logarithm for tail empirical processes”, Ann. Inst. Henri Poincare, 36:5 (2000), 583–616 | DOI | MR | Zbl

[15] P. Deheuvels, D. M. Mason, “Nonstandart functional laws of the iterated logarithm for tail empirical and quantile processes”, Ann. Probab., 18 (1990), 1693–1722 | DOI | MR | Zbl

[16] K. Grill, “A lim inf result in Strassen's law of the iterated logarithm”, Probab. Theor. Rel. Fields, 89 (1991), 149–157 | DOI | MR | Zbl

[17] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF. I”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 32 (1975), 111–131 | DOI | MR | Zbl

[18] J. Komlós, P. Major, G. Tusnady, “An approximation of partial sums of independent RV'-s and the sample DF. II”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 34 (1976), 34–58 | DOI | MR | Zbl

[19] K. Sato, Levi processes and infinitely divisible distributions, Cambridge University Press, 1999 | MR