Strong limit theorems for increments of renewal processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 208-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the almost surely behavior of increments of renewal processes. We derive a universal form of norming functions in strong limit theorems for increments of such processes. This unifies the following well known theorems for increments of renewal processes: the strong law of large numbers, the Erdős–Rényi law, the Csörgő-Révész law and the law of the iterated logarithm. New results are obtained for processes with distributions of renewal times from domains of attraction of a normal law and completely asymmetric stable laws with index $\alpha\in(1,2)$.
@article{ZNSL_2003_298_a13,
     author = {A. N. Frolov},
     title = {Strong limit theorems for increments of renewal processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {208--225},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a13/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - Strong limit theorems for increments of renewal processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 208
EP  - 225
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a13/
LA  - ru
ID  - ZNSL_2003_298_a13
ER  - 
%0 Journal Article
%A A. N. Frolov
%T Strong limit theorems for increments of renewal processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 208-225
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a13/
%G ru
%F ZNSL_2003_298_a13
A. N. Frolov. Strong limit theorems for increments of renewal processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 208-225. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a13/

[1] P. Erdös, A. Rényi, “On a new law of large numbers”, J. Analyse Math., 23 (1970), 103–111 | DOI | MR | Zbl

[2] J. Steinebach, “Between invariance principles and Erdős–Rényi laws”, Coll. Math. Soc. J. Bolyai., 36 (1982), 981–1005 | MR

[3] P. Deheuvels, J. Steinebach, “Sharp rates for increments of renewal processes”, Ann. Probab., 17 (1989), 700–722 | DOI | MR | Zbl

[4] Steinebach J., “Strong laws for small increments of renewal processes”, Ann. Probab., 19 (1991), 1768–1776 | DOI | MR | Zbl

[5] J. Steinebach, “Improved Erdős–Rényi and strong approximation laws for increments of renewal processes”, Ann. Probab., 14 (1986), 547–559 | DOI | MR | Zbl

[6] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Akadémiai Kiadó, Budapest, 1981 | Zbl

[7] A. N. Frolov, “On one-sided strong laws for large increments of sums”, Statist. and Probab. Letters, 37 (1998), 155–165 | DOI | MR | Zbl

[8] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, Doklady Akademii Nauk, 372:5 (2000), 596–599 | MR | Zbl

[9] A. N. Frolov, “On one-sided strong laws for increments of sums of i.i.d. random variables”, Studia Sci. Math. Hungar., 39 (2002), 333–359 | MR | Zbl

[10] A. N. Frolov, “Predelnye teoremy dlya priraschenii summ nezavisimykh sluchainykh velichin”, Teor. veroyatn. i ee primen., 48:1 (2003), 104–121 | MR | Zbl

[11] A. N. Frolov, A. I. Martikainen, J. Steinebach, “Limit theorems for maxima of sums and renewal processes”, Zap. nauchn. semin. POMI, 278, 2001, 261–274 | MR | Zbl

[12] D. M. Mason, W. van Zwet, “A note on the strong approximation to the renewal processes”, Publ. Inst. Statist. Univ. Paris, 32 (1987), 81–93 | MR

[13] M. Csörgő, L. Horváth, J. Steinebach, “Invariance principles for renewal processes”, Ann. Probab., 15 (1987), 1441–1460 | DOI | MR | Zbl

[14] W. Feller, “Limit theorems for probabilities of large deviations”, Z. Wahrsch. Verw. Geb., 14 (1969), 1–20 | DOI | MR | Zbl

[15] L. V. Rozovskii, “O nizhnei granitse veroyatnostei bolshikh uklonenii dlya vyborochnogo srednego pri vypolneniii usloviya Kramera”, Zap. nauchn. semin. POMI, 278, 2001, 208–224 | Zbl

[16] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR