On asymptotic behaviour of increments of random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 191-207

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive universal strong laws for increments of sums of i.i.d. random variables with multidimensional indices where an exponential moment does not exist. Our theorems yield the strong law of large numbers, the law of the iterated logarithm and the Csörgő-Révész laws for random fields. New results are obtained for distributions from domains of attraction of a normal law and completely asymmetric stable laws with index $\alpha\in(1,2)$.
@article{ZNSL_2003_298_a12,
     author = {A. N. Frolov},
     title = {On asymptotic behaviour of increments of random fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--207},
     publisher = {mathdoc},
     volume = {298},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - On asymptotic behaviour of increments of random fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 191
EP  - 207
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/
LA  - ru
ID  - ZNSL_2003_298_a12
ER  - 
%0 Journal Article
%A A. N. Frolov
%T On asymptotic behaviour of increments of random fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 191-207
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/
%G ru
%F ZNSL_2003_298_a12
A. N. Frolov. On asymptotic behaviour of increments of random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 191-207. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/