On asymptotic behaviour of increments of random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 191-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive universal strong laws for increments of sums of i.i.d. random variables with multidimensional indices where an exponential moment does not exist. Our theorems yield the strong law of large numbers, the law of the iterated logarithm and the Csörgő-Révész laws for random fields. New results are obtained for distributions from domains of attraction of a normal law and completely asymmetric stable laws with index $\alpha\in(1,2)$.
@article{ZNSL_2003_298_a12,
     author = {A. N. Frolov},
     title = {On asymptotic behaviour of increments of random fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--207},
     year = {2003},
     volume = {298},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - On asymptotic behaviour of increments of random fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 191
EP  - 207
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/
LA  - ru
ID  - ZNSL_2003_298_a12
ER  - 
%0 Journal Article
%A A. N. Frolov
%T On asymptotic behaviour of increments of random fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 191-207
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/
%G ru
%F ZNSL_2003_298_a12
A. N. Frolov. On asymptotic behaviour of increments of random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 191-207. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/

[1] P. Erdős, A. Rényi, “On a new law of large numbers”, J. Anal. Math., 23 (1970), 103–111 | DOI | MR | Zbl

[2] L. A. Shepp, “A limit law concerning moving averages”, Ann. Math. Stat., 35 (1964), 424–428 | DOI | MR | Zbl

[3] S. Csörgő, “Erdős–Rényi laws”, Ann. Stat., 7 (1979), 772–787 | DOI | MR

[4] P. Deheuvels, L. Devroye, “Limit laws of Erdős–Rényi–Shepp type”, Ann. Probab., 15 (1987), 1363–1386 | DOI | MR | Zbl

[5] D. M. Mason, “An extended version of the Erdős–Rényi strong law of large numbers”, Ann. Probab., 17 (1989), 257–265 | DOI | MR | Zbl

[6] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest, 1981 | Zbl

[7] N. M. Zinchenko, “Asimptotika priraschenii ustoichivykh sluchainykh protsessov so skachkami odnogo znaka”, Teoriya veroyatn. i ee primen., 32:4 (1987), 793–796 | MR

[8] A. N. Frolov, “On one-sided strong laws for large increments of sums”, Statist. Probab. Lett., 37 (1998), 155–165 | DOI | MR | Zbl

[9] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, DAN RAN, 372:5 (2000), 596–599 | MR | Zbl

[10] A. N. Frolov, “On one-sided strong laws for increments of sums of i.i.d. random variables”, Studia Sci. Math. Hungar., 39 (2002), 333–359 | MR | Zbl

[11] A. H. C. Chan, “Erdős–Rényi type modulus of continuity theorems for Brownian sheets”, Studia Sci. Math. Hungar., 11 (1976), 59–68 | MR | Zbl

[12] M. Csörgő, P. Révész, “How big are the increments of a multiparameter Wiener process?”, Z. Wahrscheinlichkeitstheorie verw. Geb., 42 (1978), 1–12 | DOI | MR | Zbl

[13] N. M. Zinchenko, “On the asymptotic behavior of increments of certain classes of random fields”, Theor. Probab. Math. Stat., 48 (1994), 7–11 | MR

[14] J. Steinebach, “On the increments of partial sum processes with multidimensional indices”, Z. Wahrscheinlichkeitstheorie verw. Geb., 63 (1983), 59–70 | DOI | MR | Zbl

[15] P. Deheuvels, “On the Erdős–Rényi theorem for random fields and sequences and its relationships with the theory of runs and spacings”, Z. Wahrscheinlichkeitstheorie verw. Geb., 70 (1985), 91–115 | DOI | MR | Zbl

[16] O. E. Scherbakova, “The asymptotic behaviour of random fields increment”, Abstracts Intern. Gnedenko Conf. (Kyiv, June 3–7, 2002), 2002, 26

[17] A. N. Frolov, “Strong limit theorems for increments of random fields”, Theory Stoch. Processes, 8(24):1–2 (2002), 89–97 | MR

[18] V. V. Petrov, Limit Theorems of Probability Theory, Oxford University Press, New York, 1995 | MR | Zbl