@article{ZNSL_2003_298_a12,
author = {A. N. Frolov},
title = {On asymptotic behaviour of increments of random fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {191--207},
year = {2003},
volume = {298},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/}
}
A. N. Frolov. On asymptotic behaviour of increments of random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 191-207. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a12/
[1] P. Erdős, A. Rényi, “On a new law of large numbers”, J. Anal. Math., 23 (1970), 103–111 | DOI | MR | Zbl
[2] L. A. Shepp, “A limit law concerning moving averages”, Ann. Math. Stat., 35 (1964), 424–428 | DOI | MR | Zbl
[3] S. Csörgő, “Erdős–Rényi laws”, Ann. Stat., 7 (1979), 772–787 | DOI | MR
[4] P. Deheuvels, L. Devroye, “Limit laws of Erdős–Rényi–Shepp type”, Ann. Probab., 15 (1987), 1363–1386 | DOI | MR | Zbl
[5] D. M. Mason, “An extended version of the Erdős–Rényi strong law of large numbers”, Ann. Probab., 17 (1989), 257–265 | DOI | MR | Zbl
[6] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest, 1981 | Zbl
[7] N. M. Zinchenko, “Asimptotika priraschenii ustoichivykh sluchainykh protsessov so skachkami odnogo znaka”, Teoriya veroyatn. i ee primen., 32:4 (1987), 793–796 | MR
[8] A. N. Frolov, “On one-sided strong laws for large increments of sums”, Statist. Probab. Lett., 37 (1998), 155–165 | DOI | MR | Zbl
[9] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, DAN RAN, 372:5 (2000), 596–599 | MR | Zbl
[10] A. N. Frolov, “On one-sided strong laws for increments of sums of i.i.d. random variables”, Studia Sci. Math. Hungar., 39 (2002), 333–359 | MR | Zbl
[11] A. H. C. Chan, “Erdős–Rényi type modulus of continuity theorems for Brownian sheets”, Studia Sci. Math. Hungar., 11 (1976), 59–68 | MR | Zbl
[12] M. Csörgő, P. Révész, “How big are the increments of a multiparameter Wiener process?”, Z. Wahrscheinlichkeitstheorie verw. Geb., 42 (1978), 1–12 | DOI | MR | Zbl
[13] N. M. Zinchenko, “On the asymptotic behavior of increments of certain classes of random fields”, Theor. Probab. Math. Stat., 48 (1994), 7–11 | MR
[14] J. Steinebach, “On the increments of partial sum processes with multidimensional indices”, Z. Wahrscheinlichkeitstheorie verw. Geb., 63 (1983), 59–70 | DOI | MR | Zbl
[15] P. Deheuvels, “On the Erdős–Rényi theorem for random fields and sequences and its relationships with the theory of runs and spacings”, Z. Wahrscheinlichkeitstheorie verw. Geb., 70 (1985), 91–115 | DOI | MR | Zbl
[16] O. E. Scherbakova, “The asymptotic behaviour of random fields increment”, Abstracts Intern. Gnedenko Conf. (Kyiv, June 3–7, 2002), 2002, 26
[17] A. N. Frolov, “Strong limit theorems for increments of random fields”, Theory Stoch. Processes, 8(24):1–2 (2002), 89–97 | MR
[18] V. V. Petrov, Limit Theorems of Probability Theory, Oxford University Press, New York, 1995 | MR | Zbl