Exact small ball constants for some Gaussian processes under $L^2$-norm
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find some logarithmic and exact small deviation asymptotics for the $L^2$-norm of certain Gaussian processes closely connected with the Wiener process. In particular the processes obtained by centering and integrating Brownian motion and Brownian bridge are examined.
@article{ZNSL_2003_298_a0,
     author = {L. Beghin and Ya. Yu. Nikitin and E. Orsingher},
     title = {Exact small ball constants for some {Gaussian} processes under $L^2$-norm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     year = {2003},
     volume = {298},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a0/}
}
TY  - JOUR
AU  - L. Beghin
AU  - Ya. Yu. Nikitin
AU  - E. Orsingher
TI  - Exact small ball constants for some Gaussian processes under $L^2$-norm
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 5
EP  - 21
VL  - 298
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a0/
LA  - en
ID  - ZNSL_2003_298_a0
ER  - 
%0 Journal Article
%A L. Beghin
%A Ya. Yu. Nikitin
%A E. Orsingher
%T Exact small ball constants for some Gaussian processes under $L^2$-norm
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 5-21
%V 298
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a0/
%G en
%F ZNSL_2003_298_a0
L. Beghin; Ya. Yu. Nikitin; E. Orsingher. Exact small ball constants for some Gaussian processes under $L^2$-norm. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 6, Tome 298 (2003), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2003_298_a0/

[1] L. Beghin, Ya. Nikitin, E. Orsingher, Exact small ball constants for some Gaussian processes under the $L^2-$norm, Technical Report No 4. Dept. of Statistics, Probability and Applied Statistics, Rome University “La Sapienza”, January 2002

[2] X. Chen, W. V. Li, “Quadratic functionals and small ball probabilities for the $m$-fold integrated Brownian motion”, Ann.Probab., 31 (2003), 1052–1077 | DOI | MR | Zbl

[3] C. Donati-Martin, M. Yor, “Fubini's theorem for double Wiener integrals and the variance of the Brownian path”, Ann. Inst. H. Poincaré, 27 (1991), 181–200 | MR | Zbl

[4] R. M. Dudley, “On the lower tails of Gaussian seminorms”, Ann. Prob., 7:2 (1979), 319–342 | DOI | MR | Zbl

[5] T. Dunker, M. A. Lifshits, W. Linde, “Small deviations of sums of independent variables”, Proc. Conf. High Dimensional Probability, Ser. Progress in Probability, 43, Birkhäuser, 1998, 59–74 | MR | Zbl

[6] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Laplace transforms via Hadamard Factorization with applications to small Ball probabilities”, Electronic J. of Probability, 8 (2003), 13 | MR | Zbl

[7] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Exact $L^2$ small balls of Gaussian processes”, J. Theor.Probab. (to appear)

[8] F. Gao, J. Hannig, F. Torcaso, “Integrated Brownian motions and exact $L_2$-small balls”, Ann.Prob., 31:3 (2003), 1320–1337 | DOI | MR | Zbl

[9] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, sums, series and products, 5th ed., Nauka, Moscow, 1971

[10] N. Henze, Ya. Yu. Nikitin, “A new approach to goodness-of-fit testing based on the integrated empirical process”, Journ. Nonpar. Statist., 12 (2000), 391–416 | DOI | MR | Zbl

[11] N. Henze, Ya. Yu. Nikitin, “Watson-type goodness-of-fit tests based on the integrated empirical process”, Math. Meth. Stat., 11 (2002), 183–202 | MR | Zbl

[12] I. A. Ibragimov, “On the probability that a Gaussian vector with values in a Hilbert space hits a sphere of small radius”, J. Sov. Math., 20 (1982), 2164–2174 | DOI

[13] M. Kac, “On deviations between theoretical and empirical distribution”, Proc. Nat. Acad. Sci. USA, 35 (1949), 252–257 | DOI | MR | Zbl

[14] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, 7-nd ed., Akademische Verlagsges. Geest and Portig, 1961

[15] D. Khoshnevisan, Z. Shi, “Chung's law for integrated Brownian motion”, Trans. Amer. Math. Soc., 350:10 (1998), 4253–4264 | DOI | MR | Zbl

[16] A. Lachal, “Study of some new integrated statistics: computation of Bahadur efficiency, relation with non-standard boundary value problems”, Mathematical Methods of Statistics, 10:1 (2001), 73–104 | MR | Zbl

[17] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, Journ. Theor. Prob., 5:1 (1992), 1–31 | DOI | MR

[18] W. V. Li, Q. M. Shao, “Gaussian processes: Inequalities, Small Ball Probabilities and Applications”, Stochastic Processes: Theory and Methods, Handbook of Statistics, 19, eds. C. R. Rao, D. Shanbhag, 2001, 533–597 | MR | Zbl

[19] M. A. Lifshits, Gaussian Random Functions, Kluwer, 1995 | MR | Zbl

[20] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Prob. Theory and Math. Stat., eds. B.Grigelionis et al., VSP/TEV, 1999, 453–468

[21] A. I. Nazarov, Ya. Yu. Nikitin, Exact small ball behavior of integrated Gaussian processes under $L_2-$norm and spectral asymptotics of boundary value problems, Preprint. Studi Statistici No 70. Istituto di Metodi Quantitativi, Universita Bocconi, Milan, Febbraio, 2003

[22] A. I. Nazarov, “On the sharp constant in the small ball asymptotics of some Gaussian processes under $L_2$-norm”, Nonlinear equations and mathematical analysis, Problems of Math. Anal., 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214 | MR

[23] G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986 | MR

[24] G. N. Sytaya, “On some asymptotic representations of the Gaussian measure in a Hilbert space”, Theory of Stochastic Processes, 2, 1974, 93–104

[25] G. S. Watson, “Goodness-of-fit tests on a circle”, Biometrika, 48 (1961), 109–114 | MR | Zbl

[26] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1996 | MR | Zbl

[27] V. M. Zolotarev, “Asymptotic behavior of Gaussian measure in $l_2$”, Journ. Soviet Math., 24 (1986), 2330–2334 | DOI