Polarization anomalies of elastic waves. Caustic and penumbra
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 136-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Theoretical study of polarization-spectral anomalies of a wave field (that is its deviation from that predicted by simple plane-wave models) is presented. A simple method of numerical simulation of anomalies of nonstationary wave fields near a caustic and in penumbra is described. It uses both leading and correcting terms in asymptotic formulas. Examples of simulation of displacements and average polarization ellipses are given. A discussion of quantitative properties of wave fields presented.
@article{ZNSL_2003_297_a8,
     author = {A. P. Kiselev and V. O. Yarovoy and E. A. Vsemirnova},
     title = {Polarization anomalies of elastic waves. {Caustic} and penumbra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--153},
     year = {2003},
     volume = {297},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a8/}
}
TY  - JOUR
AU  - A. P. Kiselev
AU  - V. O. Yarovoy
AU  - E. A. Vsemirnova
TI  - Polarization anomalies of elastic waves. Caustic and penumbra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 136
EP  - 153
VL  - 297
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a8/
LA  - ru
ID  - ZNSL_2003_297_a8
ER  - 
%0 Journal Article
%A A. P. Kiselev
%A V. O. Yarovoy
%A E. A. Vsemirnova
%T Polarization anomalies of elastic waves. Caustic and penumbra
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 136-153
%V 297
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a8/
%G ru
%F ZNSL_2003_297_a8
A. P. Kiselev; V. O. Yarovoy; E. A. Vsemirnova. Polarization anomalies of elastic waves. Caustic and penumbra. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 136-153. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a8/

[1] K. Aki, R. Richards, Kolichestvennaya seismologiya, Mir, M., 1983

[2] E. I. Galperin, Polyarizatsionnyi metod seismicheskikh issledovanii, Nedra, M., 1977

[3] N. A. Karaev, O. M. Prokator, A. L. Ronin, L. I. Platonova, “Pole padayuschikh voln v realnykh neodnorodnykh sredakh”, Vopr. dinam. teorii rasprostr. seism. voln, 23 (1983), 185–195

[4] I. A. Bykov, “Opredelenie parametrov seismicheskikh voln v PM VSP”, Vopr. dinam. teorii rasprostr. seism. voln, 24 (1984), 61–76

[5] I. A. Bykov, Metodika polyarizatsionnoi obrabotki dannykh metoda vertikalnogo seismicheskogo profilirovaniya v rudnykh raionakh, Diss., LGU, L., 1986

[6] A. S. Alekseev, V. M. Babich, B. Ya. Gelchinskii, “Luchevoi metod vychisleniya intensivnosti volnovykh frontov”, Vopr. dinam. teorii rasprostr. seism. voln, 5 (1961), 5–21

[7] V. M. Babich, A. P. Kiselev, “Nongeometrical waves – are there any? An asymptotic description of some “nongeometrical” phenomena in seismic wave propagation”, Geophys. J. Intern., 99:2 (1989), 415–420 | DOI | Zbl

[8] A. P. Kiselev, “Primesnye komponenty uprugikh voln”, Izv. AN SSSR. Fizika Zemli, 1983, no. 5, 51–56

[9] A. V. Gavrilov, A. P. Kiselev, “Vliyanie neodnorodnosti sredy i napravlennosti istochnika na polyarizatsiyu uprugikh $P$-voln”, Izv. AN SSSR. Fizika Zemli, 1986, no. 6, 84–87

[10] V. M. Guryanov, O. V. Kareva, “Algoritm vychisleniya dvukh luchevykh priblizhenii resheniya smeshannoi zadachi dlya uravneniya Lame”, Vopr. dinam. teorii rasprostr. seism. voln, no. 25, 1986, 149–169

[11] A. P. Kiselev, Yu. V. Roslov, “Ispolzovanie primesnykh komponent pri chislennom modelirovanii polyarizatsionnykh anomalii ob'emnykh uprugikh voln”, Geologiya i Geofizika, 1991, no. 4, 121–131 | MR

[12] L. Eisner, I. Ps̆enc̆ík, “Computation of additional components of the first-order ray approximation in isotropic media”, Pure Appl. Geophys., 148 (1996), 227–253 | DOI

[13] A. P. Kiselev, “Difraktsionnaya depolyarizatsiya”, Zh. tekhnicheskoi fiziki, 56:6 (1987), 330–332 | MR

[14] L. Fradkin, A. P. Kiselev, “The two-component representations of time-harmonic elastic body waves at high- and intermediate-frequency regimes”, J. Acoust. Soc. Amer., 101:1 (1997), 52–65 | DOI

[15] A. P. Kiselev, V. O. Yarovoi, “Difraktsiya, interferentsiya i depolyarizatsiya uprugikh voln. I: Polyarizatsionnye anomalii vblizi slabokonotrastnoi granitsy razdela”, Izv. RAN, Fizika Zemli, 1994, no. 11, 32–39 | MR

[16] V. Farra, S. Le Begat, “Sensitivity of $qP$-wave travel times and polarization vectors to heterogeneity, anisotropy and interfaces”, Geophys. J. Int., 121:2 (1995), 371–382 | DOI

[17] C. Boutin, J. L. Aurialt, “Rayleigh scattering in elastic composite materials”, Int. J. Eng. Sci., 31:12 (1993), 1669–1689 | DOI | MR | Zbl

[18] S. I. Aleksandrov, “Depolyarizatsiya ob'emnykh uprugikh voln pri rasseyanii v sluchaino-neodnorodnoi srede”, Izv. RAN, Fizika Zemli, 1997, no. 9, 81–88

[19] N. A. Karaev, E. N. Frolova, A. A. Anisimov, “Fizicheskoe modelirovanie polya rasseyannykh seismicheskikh voln pri prosvechivanii geterogennykh blokov”, Metody razvedochnoi geofiziki. Seismorazvedka v rudnykh raionakh, NPO Rudgeofizika, L., 1989, 38–55

[20] E. N. Frolova, Volny prosvechivaniya v geterogennykh sistemakh so srednemasshtabnymi vklyucheniyami, Kand. diss. LGU, 1991

[21] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, LGU, L., 1975 | MR

[22] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1967 | MR | Zbl

[23] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970

[24] N. Ya. Kirpichnikova, “O povedenii vblizi kaustiki nestatsionarnogo volnovogo polya s osobennostyu (tipa odnorodnoi obobschennoi funktsii) na fronte”, Zap. nauchn. semin. LOMI, 186, 1990, 122–133 | MR

[25] T. B. Yanovskaya, “Issledovanie reshenii uravnenii dinamicheskoi teorii uprugosti v okrestnosti kaustiki”, Vopr. dinam. teorii rasprostr. seism. voln, 7 (1964), 61–76

[26] S. V. Goldin, Preobrazovanie i vosstanovlenie razryvov v zadachakh tomograficheskogo tipa, In-t geol. i geofiz. SO AN SSSR, Novosibirsk, 1982

[27] A. Hanyga, M. A. Slawinski, “Caustics in $qSV$ rayfields of transversely isotropic and vertically inhomogeneous media”, Anisotropy 2000: Fractures, Converted Waves and Case Studies (9IWSA), eds. L. Ikelle, A. Gangi, Soc. Exploration Geophys., 2000, 1–18

[28] V. A. Fok, “Diffraktsiya Frenelya ot vypuklykh tel”, Usp. fiz. nauk, 43:4 (1950), 587–599 | MR

[29] V. A. Fok, Problemy diffraktsii i rasprostraneniya elektromagnitnykh voln, Nauka, M., 1970

[30] A. P. Kiselev, B. A. Chikhachev, “Metodika lokalnykh razlozhenii v zadachakh s dvumya skorostyami rasprostraneniya voln”, VI Vsesoyuznyi simpozium po difraktsii i rasprostraneniyu voln, T. 1, Erevan, 1973, 376–380

[31] B. A. Chikhachev, “Difraktsiya vysokochastotnoi uprugoi volny na granitse dvukh neodnorodnykh sred”, Vestnik LGU, Ser. Fizika, Khimiya, 1975, no. 2, 142–146

[32] B. A. Chikhachev, “Difraktsiya uprugoi volny na granitse dvukh neodnorodnykh sred”, Vopr. dinam. teorii rasprostr. ceism. voln, 16 (1976), 11–16

[33] K. D. Klem-Musatov, “Ob izmenenii intensivnosti volnovykh frontov v okrestnosti geometricheskoi teni”, DAN SSSR, 223:2 (1975), 339–342

[34] J. D. Achenbach, A. K. Gautesen, H. McMaken, Ray Methods for Waves in Elastic Solids, Pitman, 1982 | MR | Zbl

[35] C. J. Thomson, “Corrections for grazing rays in 2-D seismic modelling”, Geophys. J. Intern., 96:3 (1989), 415–446 | DOI

[36] K. D. Klem-Musatov, “Poperechnaya diffuziya ot granitsy geometricheskoi teni”, Geologiya i geofizika, 1976, no. 10, 130–139

[37] L. D. Vainshtein, D. E. Vakman, Razdelenie chastot v teorii kolebanii i voln, Nauka, M., 1983

[38] E. A. Flinn, “Signal analysis using rectilinearity and direction of particle motion”, Proc. IEEE, 53 (1965), 1880–1884 | DOI