On relations between data of dynamical and spectral inverse problems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 30-48
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As is well-known, the boundary spectral data of the compact Riemannian manifold determine its boundary dynamical data (the response operator of the wave equation) corresponding to the arbitrary time interval: the response operator is represented in the form of a series over the spectral data. The converse is true in the following sense: the response operator determines the manifold and, thus, its spectral data. For recovering the last, one can recover the manifold and then solve the (direct) boundary spectral problem. Nevertheless, such the way is not efficient and the question arises whether one can extract the spectral data from the response operator without solving the inverse problem (without recovering the manifold). The paper gives a positive answer and proposes a “direct” time-optimal procedure extracting the spectral data from the response operator. The procedure is based upon a variational principle.
@article{ZNSL_2003_297_a2,
     author = {M. I. Belishev},
     title = {On relations between data of dynamical and spectral inverse problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--48},
     year = {2003},
     volume = {297},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - On relations between data of dynamical and spectral inverse problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 30
EP  - 48
VL  - 297
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a2/
LA  - ru
ID  - ZNSL_2003_297_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%T On relations between data of dynamical and spectral inverse problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 30-48
%V 297
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a2/
%G ru
%F ZNSL_2003_297_a2
M. I. Belishev. On relations between data of dynamical and spectral inverse problems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 30-48. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a2/

[1] M. I. Belishev, “Kanonicheskaya model dinamicheskoi sistemy s granichnym upravleniem v obratnoi zadache teploprovodnosti”, Algebra i Analiz, 7:6 (1995), 3–32 | MR | Zbl

[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC-method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[3] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17 (2001), 659–682 | DOI | MR | Zbl

[4] M. I. Belishev, “On relations between spectral and dynamical inverse data”, Journal of Inverse and Ill-Posed Problems, 9:6 (2001), 547–565 | MR | Zbl

[5] M. I. Belishev, A. P. Kachalov, “Granichnoe upravlenie i kvazifotony v zadache rekonstruktsii rimanova mnogoobraziya po dinamicheskim dannym”, Zap. nauchn. semin. POMI, 203, 1992, 21–51

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. universiteta, L., 1980 | MR

[7] I. Lasiecka, R. Triggiani, “Regularity Theory of Hyperbolic Equation with Non-homogeneous Neumann Boundary Conditions. II: General Boundary Data”, Journal of Diff. Equations, 94 (1991), 112–164 | DOI | MR | Zbl

[8] V. G. Mazya, Prostranstva Soboleva, Izd-vo Leningr. universiteta, L., 1985 | MR

[9] D. Tataru, “Unique continuation for solutions of PDE's: between Hörmander's theorem and Holmgren's theorem”, Comm. PDE, 20 (1995), 855–894 | DOI | MR