On the wave attenuation in the effective model describing porous and fractured media saturated by fluid
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 216-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The wave attenuation is introduced into the effective model of media consisting of alternating elastic and fluid layers. This attenuation is connected with friction on boundaries between elastic and fluid layers and is described by additional terms in the equations of the effective model. Investigation of these equations allows to derive expressions of attenuation coefficients for every body wave propagating along the layers.
@article{ZNSL_2003_297_a12,
     author = {L. A. Molotkov},
     title = {On the wave attenuation in the effective model describing porous and fractured media saturated by fluid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {216--229},
     year = {2003},
     volume = {297},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a12/}
}
TY  - JOUR
AU  - L. A. Molotkov
TI  - On the wave attenuation in the effective model describing porous and fractured media saturated by fluid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 216
EP  - 229
VL  - 297
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a12/
LA  - ru
ID  - ZNSL_2003_297_a12
ER  - 
%0 Journal Article
%A L. A. Molotkov
%T On the wave attenuation in the effective model describing porous and fractured media saturated by fluid
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 216-229
%V 297
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a12/
%G ru
%F ZNSL_2003_297_a12
L. A. Molotkov. On the wave attenuation in the effective model describing porous and fractured media saturated by fluid. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 216-229. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a12/

[1] L. A. Molotkov, “Ob ekvivalentnosti sloisto-periodicheskikh i transversalno-izotropnykh sred”, Zap. nauchn. semin. LOMI, 89, 1979, 219–233 | MR | Zbl

[2] L. A. Molotkov, A. E. Khilo, “Issledovanie odnofaznykh i mnogofaznykh effektivnykh modelei, opisyvayuschikh periodicheskie sredy”, Zap. nauchn. semin. LOMI, 140, 1984, 105–122 | Zbl

[3] L. A. Molotkov, “Ob osobennostyakh rasprostraneniya voln v sloistykh modelyakh treschinovatykh sred”, Zap. nauchn. semin. LOMI, 173, 1988, 123–133 | MR | Zbl

[4] M. Schoenberg, “Wave propagating in alternating fluid and solid layers”, Wave Motion, 6 (1984), 303–320 | DOI | Zbl

[5] T. J. Plona, K. W. Winkler, M. Schoenberg, “Acoustic waves in alternating fluid/solid layers”, J. Acoust. Soc. Am., 81:5 (1987), 1227–1234 | DOI

[6] L. A. Molotkov, A. V. Bakulin, “Effektivnaya model sloistoi uprugo-zhidkoi sredy kak chastnyi sluchai modeli Bio”, Zap. nauchn. semin. POMI, 230, 1995, 172–195 | MR | Zbl

[7] T. Bourbie, O. Coussy, B. Zinzner, Acoustic of porous media, Paris, 1987

[8] L. A. Molotkov, Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, S.-Peterburg, 2001

[9] M. A. Biot, D. G. Willis, “The elastic coefficients of theory consolidation”, J. Appl. Mechan., 24 (1957), 594–601 | MR