@article{ZNSL_2003_297_a11,
author = {M. A. Lyalinov},
title = {On diffraction of a~plane wave by an impedance cone},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {191--215},
year = {2003},
volume = {297},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a11/}
}
M. A. Lyalinov. On diffraction of a plane wave by an impedance cone. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 191-215. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a11/
[1] V. A. Borovikov, Difraktsiya na mnogougolnikakh i mnogogrannikakh, Nauka, Moskva, 1966 | MR
[2] V. M. Babich, D. B. Dement'ev, B. A. Samokish, V. P. Smyshlyaev, “On evaluation of the diffraction coefficients for arbitrary “non-singular” directions of a smooth convex cone”, SIAM Appl. Math., 60:2 (2000), 536–573 | DOI | MR | Zbl
[3] D. S. Jones, “Scattering by a cone”, Q. J. Mech. Appl. Math., 50 (1997), 499–523 | DOI | MR | Zbl
[4] J. M. L. Bernard, Rapport CEA-R-5764, Editions Dist-Saclay, CEA/Saclay, 1997
[5] J. M. L. Bernard, M. A. Lyalinov, “The leading asymptotic term for the scattering diagram in the problem of diffraction by a narrow circular impedance cone”, J. Phys. A, 32:4 (1999), L43–L48 | DOI | MR | Zbl
[6] J. M. L. Bernard, M. A. Lyalinov, “Spectral domain solution and asymptotics for the diffraction by an impedance cone”, IEEE Trans Anten. Propag., 49:12 (2001), 1633–1635 | DOI | MR
[7] L. B. Felsen, “Plane wave scattering by small angle cones”, IRE Trans. Antennas Propag., 50 (1957), 121–129 | DOI
[8] V. M. Babich, “O difraktsii vysokochastotnoi akusticheskoi volny na absolyutno zhestkom konuse proizvolnogo secheniya”, Prikl. Matem. i Mekhan., 60:1 (1996), 72–78 | MR | Zbl
[9] J. M. L. Bernard, M. A. Lyalinov, “Diffraction of scalar waves by a convex impedance cone of arbitrary cross-section”, Wave Motion, 33 (2001), 155–181 | DOI | MR | Zbl
[10] J. M. L. Bernard, M. A. Lyalinov, “Electromagnetic scattering by an impedance cone”, IMA Journ. on Appl. Math., 2002 (to appear)
[11] Y. A. Antipov, “Diffraction of a plane wave by a circular cone with an impedance boundary condition”, SIAM Journ. Appl. Math., 62:4 (2002), 1122–1152 | DOI | MR | Zbl
[12] J. M. L. Bernard, M. A. Lyalinov, “On diffraction by an impedance cone of an arbitrary cross section: the far field in the penumbral zone”, Proc. of Intern. Workshop on Direct and Inverse Wave Scattering (Gebze, Turkey, Sept. 25–29, 2002), 73–82
[13] V. Kamotski, G. Lebeau, “Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness”, Proc. Royal. Soc. London (to appear)
[14] V. A. Fok, Problemy difraktsii i rasprostraneniya voln, M., 1970
[15] I. M. Ryzhik, I. S. Gradshtein, Tablitsy integralov, summ i proizvedenii, GTTL., M.-L., 1951
[16] D. S. Jones, The theory of electromagnetizm, Pergamon Press, London, 1964 | Zbl
[17] G. D. Maliuzhinets, “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Sov. Phys. Dokl., 3 (1958), 752–755
[18] A. A. Tuzhilin, “K teorii neodnorodnykh funktsionalnykh uravnenii Malyuzhintsa”, Differentsialnye uravneniya, 9:11 (1973), 2058–2064 | MR
[19] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, Moskva, 1987 | MR