The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 162-190
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Steklov problem considered in the paper describes free two-dimensional oscillations of an ideal, incompressible, heavy fluid in a half-plane covered by a rigid dock with two symmetric gaps. Equivalent reduction of the problem to two spectral problems for integral operators allows us to find limits for all eigenfrequencies as the spacing between gaps tends to both zero and infinity. For the fundamental eigenfrequency and the corresponding eigenfunction two terms are found in the asymptotic expansion as the spacing tends to infinity. It is proved that all eigenvalues are simple for any value of the spacing.
@article{ZNSL_2003_297_a10,
     author = {N. G. Kuznetsov and O. V. Motygin},
     title = {The {Steklov} problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--190},
     year = {2003},
     volume = {297},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
AU  - O. V. Motygin
TI  - The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 162
EP  - 190
VL  - 297
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/
LA  - ru
ID  - ZNSL_2003_297_a10
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%A O. V. Motygin
%T The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 162-190
%V 297
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/
%G ru
%F ZNSL_2003_297_a10
N. G. Kuznetsov; O. V. Motygin. The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/

[1] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathematique”, Ann. Sci. École Normale Sup., 19 (1902), 455–490 | MR | Zbl

[2] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980 | MR | Zbl

[3] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Differentsialnye uravneniya s chastnymi proizvodnymi – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 64, VINITI, Moskva, 1989 | MR | Zbl

[4] N. Kuznetsov, O. Motygin, “Sloshing problem in a half-plane covered by a dock with two gaps: monotonicity and asymptotics of eigenvalues”, C. R. Acad. Sci. Paris, Sèr. II, 329:11 (2001), 791–796

[5] D. W. Fox, J. R. Kuttler, “Sloshing frequencies”, Z. Angew. Math. Phys., 34 (1983), 668–696 | DOI | MR | Zbl

[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[7] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[8] L. Lewin, Polylogarithms and Associated Functions, North Holland, Amsterdam, 1981 | MR | Zbl

[9] B. A. Troesch, “Proof of a conjecture on sloshing frequencies”, Z. Angew. Math. Phys., 25 (1974), 655–657 | DOI | MR | Zbl

[10] B. A. Troesch, H. R. Troesch, “A remark on the sloshing frequencies for a half-space”, Z. Angew. Math. Phys., 23 (1972), 703–711 | DOI | MR | Zbl

[11] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1967 | MR

[12] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd. LGU, L., 1980 | MR

[13] A. M. J. Davis, “Waves in the presence of an infinite dock with gap”, J. Inst. Math. Appl., 6 (1970), 141–156 | DOI | Zbl

[14] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg, New York, 1980

[15] J. W. Miles, “On the eigenvalue problem for fluid sloshing in a half-space”, Z. Angew. Math. Phys., 23 (1972), 861–868 | DOI | MR