The Steklov problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 162-190
Voir la notice de l'article provenant de la source Math-Net.Ru
The Steklov problem considered in the paper describes free two-dimensional oscillations of an ideal, incompressible, heavy fluid in a half-plane covered by a rigid dock with two symmetric gaps. Equivalent reduction of the problem to two spectral problems for integral operators allows us to find limits for all eigenfrequencies as the spacing between gaps tends to both zero and infinity. For the fundamental eigenfrequency and the corresponding eigenfunction two terms are found in the asymptotic expansion as the spacing tends to infinity. It is proved that all eigenvalues are simple for any value of the spacing.
@article{ZNSL_2003_297_a10,
author = {N. G. Kuznetsov and O. V. Motygin},
title = {The {Steklov} problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--190},
publisher = {mathdoc},
volume = {297},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/}
}
TY - JOUR AU - N. G. Kuznetsov AU - O. V. Motygin TI - The Steklov problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 162 EP - 190 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/ LA - ru ID - ZNSL_2003_297_a10 ER -
%0 Journal Article %A N. G. Kuznetsov %A O. V. Motygin %T The Steklov problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 162-190 %V 297 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/ %G ru %F ZNSL_2003_297_a10
N. G. Kuznetsov; O. V. Motygin. The Steklov problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/