Voir la notice du chapitre de livre
@article{ZNSL_2003_297_a10,
author = {N. G. Kuznetsov and O. V. Motygin},
title = {The {Steklov} problem in a half-plane: the dependence of eigenvalues on a~piecewise-constant coefficient},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--190},
year = {2003},
volume = {297},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/}
}
TY - JOUR AU - N. G. Kuznetsov AU - O. V. Motygin TI - The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 162 EP - 190 VL - 297 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/ LA - ru ID - ZNSL_2003_297_a10 ER -
%0 Journal Article %A N. G. Kuznetsov %A O. V. Motygin %T The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 162-190 %V 297 %U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/ %G ru %F ZNSL_2003_297_a10
N. G. Kuznetsov; O. V. Motygin. The Steklov problem in a half-plane: the dependence of eigenvalues on a piecewise-constant coefficient. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a10/
[1] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathematique”, Ann. Sci. École Normale Sup., 19 (1902), 455–490 | MR | Zbl
[2] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980 | MR | Zbl
[3] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Differentsialnye uravneniya s chastnymi proizvodnymi – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 64, VINITI, Moskva, 1989 | MR | Zbl
[4] N. Kuznetsov, O. Motygin, “Sloshing problem in a half-plane covered by a dock with two gaps: monotonicity and asymptotics of eigenvalues”, C. R. Acad. Sci. Paris, Sèr. II, 329:11 (2001), 791–796
[5] D. W. Fox, J. R. Kuttler, “Sloshing frequencies”, Z. Angew. Math. Phys., 34 (1983), 668–696 | DOI | MR | Zbl
[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[7] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR | Zbl
[8] L. Lewin, Polylogarithms and Associated Functions, North Holland, Amsterdam, 1981 | MR | Zbl
[9] B. A. Troesch, “Proof of a conjecture on sloshing frequencies”, Z. Angew. Math. Phys., 25 (1974), 655–657 | DOI | MR | Zbl
[10] B. A. Troesch, H. R. Troesch, “A remark on the sloshing frequencies for a half-space”, Z. Angew. Math. Phys., 23 (1972), 703–711 | DOI | MR | Zbl
[11] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1967 | MR
[12] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd. LGU, L., 1980 | MR
[13] A. M. J. Davis, “Waves in the presence of an infinite dock with gap”, J. Inst. Math. Appl., 6 (1970), 141–156 | DOI | Zbl
[14] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg, New York, 1980
[15] J. W. Miles, “On the eigenvalue problem for fluid sloshing in a half-space”, Z. Angew. Math. Phys., 23 (1972), 861–868 | DOI | MR