On propagation of creeping waves along the curvilinear surface of an anisotropic elastic body
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 9-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An analytical expression for the wave field of a creeping wave, propagating along the curvilinear surface of an anisotropic elastic body is constructed by the boundary layer method.
@article{ZNSL_2003_297_a1,
     author = {V. M. Babich},
     title = {On propagation of creeping waves along the curvilinear surface of an anisotropic elastic body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--29},
     year = {2003},
     volume = {297},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - On propagation of creeping waves along the curvilinear surface of an anisotropic elastic body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 9
EP  - 29
VL  - 297
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a1/
LA  - ru
ID  - ZNSL_2003_297_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T On propagation of creeping waves along the curvilinear surface of an anisotropic elastic body
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 9-29
%V 297
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a1/
%G ru
%F ZNSL_2003_297_a1
V. M. Babich. On propagation of creeping waves along the curvilinear surface of an anisotropic elastic body. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 32, Tome 297 (2003), pp. 9-29. http://geodesic.mathdoc.fr/item/ZNSL_2003_297_a1/

[1] V. G. Gratsinskii, “Issledovanie uprugikh voln v modeli skvazhiny”, Izv. AN SSSR, ser. geofiz., 3 (1964), 322–338

[2] P. V. Krauklis, G. Kovalle, “Ob asimptoticheskom podkhode k issledovaniyu voln, difragirovannykh na yadre Zemli”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 28, 1989, 52–55

[3] N. Ya. Kirpichnikova, “O rasprostranenii sosredotochennykh vblizi luchei poverkhnostnykh voln”, Trudy MIAN, 115, 1971

[4] P. V. Krauklis, N. V. Tsepelev, “O postroenii vysokochastotnoi asimptotiki volnovogo polya, sosredotochennogo vblizi granitsy uprugoi sredy”, Zap. nauchn. semin. LOMI, 34, 1973, 72–92 | Zbl

[5] P. V. Krauklis, N. V. Tsepelev, “Pripoverkhnostnye volny v neodnorodnom sreze s proizvolnoi gladkoi granitsei”, Izv. AN SSSR, Fizika Zemli, 6 (1973), 3–11

[6] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, LGU, L., 1974 | MR

[7] D. Bouche, “Etude des ondes rampantes sur un corps convexe vérificant une condition d'impédance par une méthode de développement asymptotique”, Ann. Télécommun, 47:9–10 (1992)

[8] V. D. Azhotkin, V. M. Babich, “O rasprostranenii voln Lyava vdol poverkhnosti uprugogo tela proizvolnoi formy”, Zap. nauchn. semin. LOMI, 165, 1983, 9–14

[9] Z. A. Yanson, “O rasprostranenii voln Releya tipa $SV$ v transversalno-izotropnykh uprugikh sredakh”, Zap. nauchn. semin. POMI, 230, 1995, 278–292 | MR | Zbl

[10] Z. A. Yanson, “Vysshie priblizheniya asimptotiki poverkhnostnykh voln Lyava $SH$ v transversalno-izotropnykh uprugikh sredakh”, Zap. nauchn. semin. POMI, 257, 1999, 323–345 | MR | Zbl

[11] N. Ya. Kirpichnikova, V. B. Filippov, “Difraktsiya volny shepchuschei galerei vblizi razryva krivizn”, Zap. nauchn. semin. POMI, 239, 1997, 95–109 | MR | Zbl

[12] Dzh. Uizem, Lineinye i nelineinye volny, M., 1977

[13] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod. (Lineinye i nelineinye volny), Izd. LGU, Leningrad, 1985 | MR | Zbl

[14] F. G. Friedlander, J. B. Keller, “Asymptotic expansion of solution of $(\nabla^2+k^2)u=0$”, Comm. Pure Appl. Math., 8 (1955), 387–394 | DOI | MR | Zbl