Methods for solving spectral problems for multiparameter matrix pencils
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 139-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Method for solving the partial eigenproblem for multiparameter regular pencils of real matrices, which allow to improve given approximations of an eigenvector and the associated point of the spectrum (both finite and infinite) are suggested. The possibility of extending the methods to complex matrices, polynomial matrices, and coupled multiparameter problems is indicated.
@article{ZNSL_2003_296_a8,
     author = {V. B. Khazanov},
     title = {Methods for solving spectral problems for multiparameter matrix pencils},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--168},
     year = {2003},
     volume = {296},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a8/}
}
TY  - JOUR
AU  - V. B. Khazanov
TI  - Methods for solving spectral problems for multiparameter matrix pencils
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 139
EP  - 168
VL  - 296
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a8/
LA  - ru
ID  - ZNSL_2003_296_a8
ER  - 
%0 Journal Article
%A V. B. Khazanov
%T Methods for solving spectral problems for multiparameter matrix pencils
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 139-168
%V 296
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a8/
%G ru
%F ZNSL_2003_296_a8
V. B. Khazanov. Methods for solving spectral problems for multiparameter matrix pencils. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 139-168. http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a8/

[1] V. N. Kublanovskaya, “Metody i algoritmy resheniya spektralnykh zadach dlya polinomialnykh i ratsionalnykh matrits”, Zap. nauchn. semin. POMI, 238, 1997, 3–330

[2] V. B. Khazanov, “Metody resheniya mnogoparametricheskikh zadach”, Algorithms 89, Proc. 10th Simp. Algorithms, Bratislava, 1989, 46–48

[3] V. B. Khazanov, “O spektralnykh svoistvakh mnogoparametricheskikh polinomialnykh matrits”, Zap. nauchn. semin. POMI, 229, 1995, 284–321 | MR

[4] V. B. Khazanov, “O sobstvennykh porozhdayuschikh vektorakh mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 248, 1998, 165–186 | MR | Zbl

[5] V. B. Khazanov, “O nekotorykh svoistvakh polinomialnykh bazisov nad polem ratsionalnykh funktsii mnogikh peremennykh”, Zap. nauchn. semin. POMI, 284, 2002, 177–191 | MR | Zbl

[6] E. K. Blum, A. F. Chang, “A numerical methods for the solution of the double eigenvalue problems”, J. Inst. Math. Appl., 22:1 (1978), 29–42 | DOI | MR | Zbl

[7] E. K. Blum, A. R. Curtis, “A convergent gradient method for matrix eigenvector-eigenvalue problems”, Numer. Math., 31:3 (1978), 247–263 | DOI | MR | Zbl

[8] E. K. Blum, G. H. Rodrigue, “Solutions of eigenvalue problems in Hilbert spaces by a gradient method”, J. Comput. System Sci., 2 (1974), 220–237 | DOI | MR

[9] A. Cuit, Pade approximats for operators: Theory and applications, Lect. Notes Math., 1065, 1984

[10] G. Peters, J. H. Wilkinson, “Inverse iteration, ill-conditional equations and Newton's method”, SIAM Reviev, 21:3 (1979), 339–360 | DOI | MR | Zbl