@article{ZNSL_2003_296_a8,
author = {V. B. Khazanov},
title = {Methods for solving spectral problems for multiparameter matrix pencils},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--168},
year = {2003},
volume = {296},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a8/}
}
V. B. Khazanov. Methods for solving spectral problems for multiparameter matrix pencils. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 139-168. http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a8/
[1] V. N. Kublanovskaya, “Metody i algoritmy resheniya spektralnykh zadach dlya polinomialnykh i ratsionalnykh matrits”, Zap. nauchn. semin. POMI, 238, 1997, 3–330
[2] V. B. Khazanov, “Metody resheniya mnogoparametricheskikh zadach”, Algorithms 89, Proc. 10th Simp. Algorithms, Bratislava, 1989, 46–48
[3] V. B. Khazanov, “O spektralnykh svoistvakh mnogoparametricheskikh polinomialnykh matrits”, Zap. nauchn. semin. POMI, 229, 1995, 284–321 | MR
[4] V. B. Khazanov, “O sobstvennykh porozhdayuschikh vektorakh mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 248, 1998, 165–186 | MR | Zbl
[5] V. B. Khazanov, “O nekotorykh svoistvakh polinomialnykh bazisov nad polem ratsionalnykh funktsii mnogikh peremennykh”, Zap. nauchn. semin. POMI, 284, 2002, 177–191 | MR | Zbl
[6] E. K. Blum, A. F. Chang, “A numerical methods for the solution of the double eigenvalue problems”, J. Inst. Math. Appl., 22:1 (1978), 29–42 | DOI | MR | Zbl
[7] E. K. Blum, A. R. Curtis, “A convergent gradient method for matrix eigenvector-eigenvalue problems”, Numer. Math., 31:3 (1978), 247–263 | DOI | MR | Zbl
[8] E. K. Blum, G. H. Rodrigue, “Solutions of eigenvalue problems in Hilbert spaces by a gradient method”, J. Comput. System Sci., 2 (1974), 220–237 | DOI | MR
[9] A. Cuit, Pade approximats for operators: Theory and applications, Lect. Notes Math., 1065, 1984
[10] G. Peters, J. H. Wilkinson, “Inverse iteration, ill-conditional equations and Newton's method”, SIAM Reviev, 21:3 (1979), 339–360 | DOI | MR | Zbl