To solving multiparameter problems of algebra. 3.~Cylindrical manifolds of the regular spectrum of a~matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 108-121

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods for computing polynomials (complete polynomials) whose zeros form in the space $\mathbb C^q$ cylindrical manofolds of the regular spectrum of a $q$-parameter polynomial matrix are considered. Based on the method of partial relative factorization of matrices, new methods for computing cylindrical manifolds are suggested. The $\Psi W$ and $\Psi V$ methods, previously proposed for computing complete polynomials of $q$-parameter polynomial matrices whose regular spectrum is independent of one of the parameters, are extended to a wider class of matrices.
@article{ZNSL_2003_296_a6,
     author = {V. N. Kublanovskaya},
     title = {To solving multiparameter problems of algebra. {3.~Cylindrical} manifolds of the regular spectrum of a~matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--121},
     publisher = {mathdoc},
     volume = {296},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a6/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - To solving multiparameter problems of algebra. 3.~Cylindrical manifolds of the regular spectrum of a~matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 108
EP  - 121
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a6/
LA  - ru
ID  - ZNSL_2003_296_a6
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T To solving multiparameter problems of algebra. 3.~Cylindrical manifolds of the regular spectrum of a~matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 108-121
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a6/
%G ru
%F ZNSL_2003_296_a6
V. N. Kublanovskaya. To solving multiparameter problems of algebra. 3.~Cylindrical manifolds of the regular spectrum of a~matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 108-121. http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a6/