Bounds and inequalities for the Perron root of a nonnegative matrix. II. Circuit bounds and inequalities
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 60-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper suggests two-sided, upper, and lower circuit bounds for the Perron root of a nonnegative matrix, most of which are derived based on an extension of the monotonicity property of the Perron root established by Fiedler and Pták.
@article{ZNSL_2003_296_a4,
     author = {L. Yu. Kolotilina},
     title = {Bounds and inequalities for the {Perron} root of a~nonnegative matrix. {II.~Circuit} bounds and inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--88},
     year = {2003},
     volume = {296},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a4/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds and inequalities for the Perron root of a nonnegative matrix. II. Circuit bounds and inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 60
EP  - 88
VL  - 296
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a4/
LA  - ru
ID  - ZNSL_2003_296_a4
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds and inequalities for the Perron root of a nonnegative matrix. II. Circuit bounds and inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 60-88
%V 296
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a4/
%G ru
%F ZNSL_2003_296_a4
L. Yu. Kolotilina. Bounds and inequalities for the Perron root of a nonnegative matrix. II. Circuit bounds and inequalities. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 60-88. http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a4/

[1] Yu. A. Alpin, “Granitsy dlya perronova kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Mat. zametki, 58 (1995), 635–637 | MR

[2] L. Yu. Kolotilina, “Nizhnie otsenki perronovskogo kornya summy neotritsatelnykh matrits”, Zap. nauchn. semin. POMI, 268, 2000, 49–71 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl

[4] A. Brauer, I. C. Gentry, “Bounds for the greatest characteristic root of an irreducible nonnegative matrix, II”, Linear Algebra Appl., 13 (1976), 109–114 | DOI | MR | Zbl

[5] R. Brualdi, “Matrices, eigenvalues, and directed graphs”, Linear and Multilinear Algebra, 11 (1982), 143–165 | DOI | MR | Zbl

[6] M. Fiedler, V. Pták, “Cyclic products and an inequality for determinants”, Czechoslovak Math. J., 19 (1969), 428–450 | MR

[7] S. Friedland, S. Karlin, “Some inequalities for the spectral radius of non-negative matrices and applications”, Duke Math. J., 42 (1975), 459–490 | DOI | MR | Zbl

[8] R. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985 | MR | Zbl

[9] Shu-Lin Liu, “Bounds for the greatest characteristic root of a nonnegative matrix”, Linear Algebra Appl., 239 (1996), 151–160 | DOI | MR | Zbl