The strengthened versions of the additive and multiplicative Weyl inequalities
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 39-59
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The strengthened versions of the classical additive and multiplicative Weyl inequalities for the singular values of $A+B$ and $AB^*$, where $A$ and $B$ are rectangular matrices, and for the eigenvalues of $A+B$ and $AB$, where $A$ and $B$ are Hermitian matrices, are established under certain assumptions on the subspaces spanned by some singular vectors or eigenvectors of $A$ and $B$.
@article{ZNSL_2003_296_a3,
     author = {L. Yu. Kolotilina},
     title = {The strengthened versions of the additive and multiplicative {Weyl} inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--59},
     year = {2003},
     volume = {296},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a3/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - The strengthened versions of the additive and multiplicative Weyl inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 39
EP  - 59
VL  - 296
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a3/
LA  - ru
ID  - ZNSL_2003_296_a3
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T The strengthened versions of the additive and multiplicative Weyl inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 39-59
%V 296
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a3/
%G ru
%F ZNSL_2003_296_a3
L. Yu. Kolotilina. The strengthened versions of the additive and multiplicative Weyl inequalities. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 39-59. http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a3/

[1] R. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991 | MR

[2] Y. Ikebe, T. Inagaki, S. Miyamoto, “The monotonicity theorem, Cauchy's interlace theorem, and the Courant–Fischer theorem”, Amer. Math. Monthly, 94 (1987), 352–354 | DOI | MR | Zbl

[3] W. So, “Commutativity and spectra of Hermitian matrices”, Linear Algebra Appl., 212–213 (1994), 121–129 | DOI | MR | Zbl

[4] R. C. Thompson, “Singular value inequalities for matrix sums and minors”, Linear Algebra Appl., 11 (1975), 251–269 | DOI | MR | Zbl

[5] R. C. Thompson, L. J. Freede, “On the eigenvalues of sums of Hermitian matrices”, Linear Algebra Appl., 4 (1971), 369–376 | DOI | MR | Zbl

[6] R. C. Thompson, S. Therianos, “On the singular values of matrix products, I”, Scripta Math., XXIX (1973), 99–110 | MR | Zbl