Solvability of Verigin problem in Sobolev spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 180-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, $L_p$ estimates are obtained for the solution of a model problem arising in the linearization of the Verigin problem. The proof is based on the application of theorems on Fourier multipliers. The result obtained may be used for the proof of the solvability of the verigin problem in anisotropic Sobolev spaces.
@article{ZNSL_2003_295_a7,
     author = {E. V. Frolova},
     title = {Solvability of {Verigin} problem in {Sobolev} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--203},
     year = {2003},
     volume = {295},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a7/}
}
TY  - JOUR
AU  - E. V. Frolova
TI  - Solvability of Verigin problem in Sobolev spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 180
EP  - 203
VL  - 295
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a7/
LA  - ru
ID  - ZNSL_2003_295_a7
ER  - 
%0 Journal Article
%A E. V. Frolova
%T Solvability of Verigin problem in Sobolev spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 180-203
%V 295
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a7/
%G ru
%F ZNSL_2003_295_a7
E. V. Frolova. Solvability of Verigin problem in Sobolev spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 180-203. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a7/

[1] N. N. Verigin, “Nagnetanie vyazhuschikh rastvorov v gornye porody v tselyakh povysheniya prochnosti i vodonepronitsaemosti osnovaniya gidrotekhnicheskikh sooruzhenii”, Izv. AN SSSR. OTN, 1952, no. 5, 674–687

[2] E. V. Radkevich, “O razreshimosti obschikh nestatsionarnykh zadach so svobodnoi granitsei”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, AN SSSR, SO, Institut matematiki, Novosibirsk, 1986, 85–111

[3] G. I. Bizhanova, V. A. Solonnikov, “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii vtorogo poryadka”, Algebra i analiz, 12:6 (2000), 98–139 | MR

[4] G. I. Bizhanova, V. A. Solonnikov, “O nekotorykh modelnykh zadachakh dlya parabolicheskikh uravnenii vtorogo poryadka s proizvodnoi po vremeni v kraevom uslovii”, Algebra i analiz, 6:6 (1994), 30–50 | MR

[5] E. I. Hanzawa, “Classical solution of the Stefan problem”, Tohoku Math. J., 1981, no. 33, 297–335 | DOI | MR | Zbl

[6] V. A. Solonnikov, E. V. Frolova, “$L_p$ teoriya dlya zadachi Stefana”, Zap. nauchn. semin. POMI, 243, 1997, 299–323 | MR | Zbl

[7] V. A. Solonnikov, “Free boundary problems for second order parabolic equations”, Progress in partial differential equations, V. 2, Pitman Res. Notes Math. Series, 384, Longman, Harlow, 1998, 116–126 | MR | Zbl

[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[9] E. V. Frolova, “Solvability in Sobolev spaces of a problem for a second order parabolic equation with time derivative in the boundary condition”, Portugaliae Matematica, 56:4 (1999), 419–441 | MR | Zbl

[10] E. V. Frolova, “Otsenki v $L_p$ dlya resheniya modelnoi zadachi, sootvetstvuyuschei zadache Verigina”, Zap. nauchn. semin. POMI, 259, 1999, 280–295 | Zbl

[11] V. A. Solonnikov, “Ob otsenkakh v $L_p$ reshenii ellipticheskikh i parabolicheskikh sistem”, Trudy MIAN, 102, 1967, 137–160 | MR

[12] G. I. Bizhanova, “Reshenie v vesovom prostranstve Geldera nachalno-kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka s proizvodnoi po vremeni v uslovii sopryazheniya”, Algebra i analiz, 6:1 (1994), 64–94 | MR

[13] G. I. Bizhanova, “Resheniya $n$-mernoi zadachi sopryazheniya dlya uravneniya teploprovodnosti v gelderovskom prostranstve funktsii”, Izv. AN Kazakh. SSR, Ser. fiz.–mat., 1991, 21–27 | MR

[14] V. A. Solonnikov, “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Trudy MIAN, 70, 1964, 133–212 | MR | Zbl