Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 168-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a simple proof of the so-called $\varepsilon$-regularity of suitable weak solutions to the Navier–Stokes equations near the boundary.
@article{ZNSL_2003_295_a6,
     author = {G. A. Seregin},
     title = {Remarks on regularity of weak solutions to the {Navier{\textendash}Stokes} equations near the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--179},
     year = {2003},
     volume = {295},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a6/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 168
EP  - 179
VL  - 295
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a6/
LA  - en
ID  - ZNSL_2003_295_a6
ER  - 
%0 Journal Article
%A G. A. Seregin
%T Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 168-179
%V 295
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a6/
%G en
%F ZNSL_2003_295_a6
G. A. Seregin. Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 168-179. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a6/

[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] L. Escauriaza, G. Seregin, V. Šverák, “$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskih Nauk, 58:2 (2003), 3–44 | MR | Zbl

[3] O. A. Ladyzenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR

[4] F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zapiski Nauchn. Seminar. POMI, 271, 2000, 204–223 | MR | Zbl

[6] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[7] G. A. Seregin, “Differential properties of weak solutions of Navier–Stokes equations”, Algebra i Analiz, 14:1 (2002), 194–237 | MR | Zbl