On the nonstationary Stokes equations in half-space with continuous initial data
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 118-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to nonstationary Stokes equations in a half-space. The existence and uniqueness of a solution are proved in spaces of bounded or continuous functions. Estimates of solutions are given in the uniform norm and in the norms of Hölder spaces.
@article{ZNSL_2003_295_a5,
     author = {P. Maremonti and G. Starita},
     title = {On the nonstationary {Stokes} equations in half-space with continuous initial data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--167},
     year = {2003},
     volume = {295},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a5/}
}
TY  - JOUR
AU  - P. Maremonti
AU  - G. Starita
TI  - On the nonstationary Stokes equations in half-space with continuous initial data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 118
EP  - 167
VL  - 295
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a5/
LA  - en
ID  - ZNSL_2003_295_a5
ER  - 
%0 Journal Article
%A P. Maremonti
%A G. Starita
%T On the nonstationary Stokes equations in half-space with continuous initial data
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 118-167
%V 295
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a5/
%G en
%F ZNSL_2003_295_a5
P. Maremonti; G. Starita. On the nonstationary Stokes equations in half-space with continuous initial data. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 118-167. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a5/

[1] M. E. Bogovski, “Solution of the first boundary-value problem for the equation of continuity of an incompressible medium”, Soviet Math. Dokl., 20 (1979), 1094–1098 | MR | Zbl

[2] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, I, II, Springer-Verlag, 1994 | MR

[3] Y. Giga, “Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions for the Navier–Stokes system”, J. Diff. Equations, 62 (1986), 186–212 | DOI | MR

[4] H. Iwashita, “$L^q-L^r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in $L^q$ spaces”, Math. Ann., 285 (1989), 265–288 | DOI | MR | Zbl

[5] G. H. Knightly, “On a class of global solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 21 (1966), 211–245 | DOI | MR | Zbl

[6] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasi-Linear Equations of Elliptic Type, Academic Press, 1968 | MR | Zbl

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Translation of Math. Monographs AMS, 23, 1968

[8] P. Maremonti, V. A. Solonnikov, “On the estimates of solutions of the evolution Stokes problem in anisotropic Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. LOMI, 223, 1994, 124–150 | MR

[9] P. Maremonti, V. A. Solonnikov, “On the nonstationary Stokes problem in exterior domains”, Annali Sc. Norm. Sup. Pisa, 24 (1997), 395–449 | MR | Zbl

[10] F. K. G. Odqvist, “Über die Randwertaufgaben der Hydrodinamik zäher Flüssigkeiten”, Math. Z., 32 (1930), 329–375 | DOI | MR

[11] C. G. Simader, H. Sohr, “The Helmholtz decomposition in $L^q$ and related topics”, Advances Math. for Applied Sc., 11 (1992), 1–35 | MR | Zbl

[12] V. A. Solonnikov, “Estimates for the solutions of a nonstationary linearized system of Navier–Stokes equations”, Tran. Amer. Math. Soc., 75 (1968), 1–116 | Zbl

[13] V. A. Solonnikov, “Estimates for solutions of nonstationary Navier–Stokes equations”, J. Soviet Math., 8 (1977), 467–528 | DOI

[14] V. A. Solonnikov, On the theory of nonstationary hydrodynamic potentials, Lecture Notes Pure Appl. Math., 223, 2002 | MR | Zbl

[15] L. Stupelis, Navier–Stokes Equations in Irregular Domains, Kluwer Academ. Publ., 1992 | MR

[16] S. Ukai, “A solution formula for the Stokes equation in $\mathbb R^n_+$”, Comm. Pure Appl. Math., 40 (1987), 611–621 | DOI | MR | Zbl

[17] W. von Wahl, The Equations of Navier–Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig, 1985 | MR