Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of the velocity field is obtained for the equation of motion of incompressible media. With the help of this estimate, the integro-differential equations that describe the motion of linear viscoelastic fluids in the twodimensional case are studied. The existence is proved for a weak, global in time, solution of the Cauchy problem and of the initial boundary value problem with periodic boundary conditions.
@article{ZNSL_2003_295_a3,
     author = {N. A. Karazeeva},
     title = {Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--98},
     publisher = {mathdoc},
     volume = {295},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/}
}
TY  - JOUR
AU  - N. A. Karazeeva
TI  - Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 90
EP  - 98
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/
LA  - en
ID  - ZNSL_2003_295_a3
ER  - 
%0 Journal Article
%A N. A. Karazeeva
%T Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 90-98
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/
%G en
%F ZNSL_2003_295_a3
N. A. Karazeeva. Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/