Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98
Voir la notice de l'article provenant de la source Math-Net.Ru
An estimate of the velocity field is obtained for the equation of motion of incompressible media. With the help of this estimate, the integro-differential equations that describe the motion of linear viscoelastic fluids in the twodimensional case are studied. The existence is proved for a weak, global in time, solution of the Cauchy problem and of the initial boundary value problem with periodic boundary conditions.
@article{ZNSL_2003_295_a3,
author = {N. A. Karazeeva},
title = {Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--98},
publisher = {mathdoc},
volume = {295},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/}
}
TY - JOUR AU - N. A. Karazeeva TI - Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 90 EP - 98 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/ LA - en ID - ZNSL_2003_295_a3 ER -
N. A. Karazeeva. Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/