Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An estimate of the velocity field is obtained for the equation of motion of incompressible media. With the help of this estimate, the integro-differential equations that describe the motion of linear viscoelastic fluids in the twodimensional case are studied. The existence is proved for a weak, global in time, solution of the Cauchy problem and of the initial boundary value problem with periodic boundary conditions.
@article{ZNSL_2003_295_a3,
     author = {N. A. Karazeeva},
     title = {Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--98},
     year = {2003},
     volume = {295},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/}
}
TY  - JOUR
AU  - N. A. Karazeeva
TI  - Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 90
EP  - 98
VL  - 295
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/
LA  - en
ID  - ZNSL_2003_295_a3
ER  - 
%0 Journal Article
%A N. A. Karazeeva
%T Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 90-98
%V 295
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/
%G en
%F ZNSL_2003_295_a3
N. A. Karazeeva. Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/

[1] O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New-York, 1969 | MR | Zbl

[2] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Springer-Verlag, Berlin, 1985 | MR

[3] M. Renardy, “On the domain space for constitutive laws in linear viscoelasticity”, Archive Rat. Mech., 85 (1984) | MR | Zbl

[4] G. Astarita, G. Marucci, Principles of Non-newtonian Fluid Mechanics, McGraw Hill, 1974

[5] N. A. Karazeeva, A. A. Kotsiolis, A. P. Oskolkov, “Attractors and dynamical systems generated by initial boundary value problems for equations of motion of linear viscoelastic fluids”, Trudy MIAN, 188, 1990, 59–87 | MR | Zbl

[6] A. P. Oskolkov, “Initial boundary value problems for the equations of motion of the Oldroyd fluids and of the Kelvin-Voight fluids”, Trudy MIAN, 179, 1988, 126–164 | MR

[7] A. P. Oskolkov, “Functional methods in the theory of nonstationary flows of linear viscoelastic fluids”, Trudy MIAN, 127, 1975, 32–57 | MR | Zbl

[8] M. Renardy, W. J. Hrusta, J. A. Nohel, Mathematical Problems of Viscoelasticity, Longman, London, 1987 | Zbl

[9] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, 1989 | MR | Zbl

[10] J. M. Golden, G. A. C. Graham, Boundary Value Problems in Linear Viscoelasticity, Springer-Verlag, 1988 | MR

[11] S. Shaw, J. R. Whiteman, “Optimal long-time $L_{p}(0,T)$ stability and semidiscrete error estimates for the Volterra formulation of the linear quasistatic viscoelasticity problem”, Numer. Math., 88:4 (2001), 743–770 | DOI | MR | Zbl

[12] A. Doubova, E. Fernandez-Cara, M. Gonzalez-Burgos, “Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds”, Comptes Rendue Acad. Sci. Paris, Ser. Math., 331:7 (2000), 537–542 | MR | Zbl

[13] M. M. Yakupov, “The phase space of the thermo-convection problem for Oskolkov's equation”, Sobolev-type equation, Chelyab. Gos. Univ., Chelyabinsk, 2002, 178–190 | MR

[14] N. A. Karazeeva, Solvability of initial boundary value problems for equations describing motions of non-Newtonian fluids with memory, Preprint Brandenburg. Tech. Univ. M-13/2001, 2001

[15] G. J. Creus, Viscoelasticity-Basic Theory and Applications to Concrete Structures, Lecture Notes in Engineering, 16, Springer-Verlag, 1986 | Zbl

[16] R. B. Bird, R. C. Armstrong, O. Hassanger, Dynamics of Polymeric Liquids, I, John Wiley and Sons, 1987

[17] J. W. Goodwin, R. W. Hughes, Rheology for Chemists, Royal Society of Chemistry, 2000

[18] F. R. Schwarzl, Polymermechanik, Springer-Verlag, 1990