@article{ZNSL_2003_295_a3,
author = {N. A. Karazeeva},
title = {Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--98},
year = {2003},
volume = {295},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/}
}
TY - JOUR AU - N. A. Karazeeva TI - Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 90 EP - 98 VL - 295 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/ LA - en ID - ZNSL_2003_295_a3 ER -
N. A. Karazeeva. Initial boundary value problems for linear viscoelastic flows generated by integrodifferential equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a3/
[1] O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New-York, 1969 | MR | Zbl
[2] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Springer-Verlag, Berlin, 1985 | MR
[3] M. Renardy, “On the domain space for constitutive laws in linear viscoelasticity”, Archive Rat. Mech., 85 (1984) | MR | Zbl
[4] G. Astarita, G. Marucci, Principles of Non-newtonian Fluid Mechanics, McGraw Hill, 1974
[5] N. A. Karazeeva, A. A. Kotsiolis, A. P. Oskolkov, “Attractors and dynamical systems generated by initial boundary value problems for equations of motion of linear viscoelastic fluids”, Trudy MIAN, 188, 1990, 59–87 | MR | Zbl
[6] A. P. Oskolkov, “Initial boundary value problems for the equations of motion of the Oldroyd fluids and of the Kelvin-Voight fluids”, Trudy MIAN, 179, 1988, 126–164 | MR
[7] A. P. Oskolkov, “Functional methods in the theory of nonstationary flows of linear viscoelastic fluids”, Trudy MIAN, 127, 1975, 32–57 | MR | Zbl
[8] M. Renardy, W. J. Hrusta, J. A. Nohel, Mathematical Problems of Viscoelasticity, Longman, London, 1987 | Zbl
[9] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, 1989 | MR | Zbl
[10] J. M. Golden, G. A. C. Graham, Boundary Value Problems in Linear Viscoelasticity, Springer-Verlag, 1988 | MR
[11] S. Shaw, J. R. Whiteman, “Optimal long-time $L_{p}(0,T)$ stability and semidiscrete error estimates for the Volterra formulation of the linear quasistatic viscoelasticity problem”, Numer. Math., 88:4 (2001), 743–770 | DOI | MR | Zbl
[12] A. Doubova, E. Fernandez-Cara, M. Gonzalez-Burgos, “Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds”, Comptes Rendue Acad. Sci. Paris, Ser. Math., 331:7 (2000), 537–542 | MR | Zbl
[13] M. M. Yakupov, “The phase space of the thermo-convection problem for Oskolkov's equation”, Sobolev-type equation, Chelyab. Gos. Univ., Chelyabinsk, 2002, 178–190 | MR
[14] N. A. Karazeeva, Solvability of initial boundary value problems for equations describing motions of non-Newtonian fluids with memory, Preprint Brandenburg. Tech. Univ. M-13/2001, 2001
[15] G. J. Creus, Viscoelasticity-Basic Theory and Applications to Concrete Structures, Lecture Notes in Engineering, 16, Springer-Verlag, 1986 | Zbl
[16] R. B. Bird, R. C. Armstrong, O. Hassanger, Dynamics of Polymeric Liquids, I, John Wiley and Sons, 1987
[17] J. W. Goodwin, R. W. Hughes, Rheology for Chemists, Royal Society of Chemistry, 2000
[18] F. R. Schwarzl, Polymermechanik, Springer-Verlag, 1990