@article{ZNSL_2003_295_a0,
author = {A. A. Arkhipova},
title = {Solvability of nondiagonal elliptic systems with quadratic growth nonlinearities (two-dimensional case)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
year = {2003},
volume = {295},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a0/}
}
TY - JOUR AU - A. A. Arkhipova TI - Solvability of nondiagonal elliptic systems with quadratic growth nonlinearities (two-dimensional case) JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 5 EP - 17 VL - 295 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a0/ LA - ru ID - ZNSL_2003_295_a0 ER -
A. A. Arkhipova. Solvability of nondiagonal elliptic systems with quadratic growth nonlinearities (two-dimensional case). Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 33, Tome 295 (2003), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2003_295_a0/
[1] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton, NJ, 1983 | MR
[2] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[3] S. Hildebrandt, H. Kaul, K.-O. Widman, “An existence theorem for harmonic mappings of Riemannian manifols”, Acta Math., 138 (1977), 1–16 | DOI | MR | Zbl
[4] J. Frehse, “On a class of nonlinear diagonal elliptic systems with critical growth and $\mathbb C^\alpha$-regularity”, Partial differential equations and the calculus of variations, II, Progr. Nonlinear Diff. Eq. Appl., 2, Birkhäuser, Boston, MA, 1989, 519–540 | MR
[5] R. Landes, “On the existence of weak solutions of perturbed systems with critical growth”, J. Reine Angew. Math., 393 (1989), 21–38 | DOI | MR | Zbl
[6] J. Frehse, “On two-dimensional quasi-linear elliptic systems”, Manuscripta Math., 28 (1979), 21–49 | DOI | MR | Zbl
[7] M. Struwe, Variational Methods, Springer-Verlag, 1990 | MR
[8] L. C. Evans, “Partial regularity for stationary harmonic maps into sphere”, Arch. Rat. Mech. Anal., 116 (1991), 101–113 | DOI | MR | Zbl
[9] T. Rivière, “Everywhere discontinuous harmonic maps into spheres”, Acta Math., 175 (1995), 197–226 | DOI | MR | Zbl
[10] A. A. Arkhipova, “O globalnoi razreshimosti zadachi Koshi–Dirikhle dlya nediagonalnykh parabolicheskikh sistem s variatsionnoi strukturoi pri dvukh prostranstvennykh peremennykh”, Sb. Problemy matem. analiza, vyp. 16, izd.S.-Peterb. un-ta, 1997, 3–40 | MR
[11] A. A. Arkhipova, “Lokalnaya i globalnaya po vremeni razreshimost zadachi Koshi–Dirikhle dlya klassa nelineinykh nediagonalnykh parabolicheskikh sistem”, Algebra i Analiz, 11:6 (1999), 69–102 | MR | Zbl
[12] A. Arkhipova, “Cauchy–Neumann problem for a class of nondiagonal parabolic systems withquadratic growth nonlinearities. I. On the continuability of smooth solutions”, Comment. Math. Univ. Carolonae, 41:4 (2000), 693–718 | MR | Zbl
[13] A. Arkhipova, “Cauchy–Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities. II. Local and global solvability results”, Comment. Math. Univ. Carolonae, 42:4 (2001), 53–76 | MR | Zbl
[14] A. Arkhipova, “Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:2 (2003), 91–108 | MR | Zbl