Intertible infinitary calculus without loop rules for a restricted FTL
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 149-180

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a fragment of first order linear time logic (with operators “next” and “always”) is considered. The object under investigation in this fragment is so-called $t$-$D$-sequents. For cosidered $t$-$D$-sequents invertible infinitary sequent calculus $G^+_\omega$ is constructed. This calculus has no loop rules, i.e. rules with duplications of a main formula in the premises of the rules. The calculus $G^+_\omega$ along with $\omega$-type rule for the temporal operator “always” contains an integrated separation rule $(IS)$ which includes the traditional loop-type rule $(\Box\to)$, a special rule $(\forall\to)$ (without duplication of a main formula) and traditional rule for the temporal operator “next”. The rule $(\to\exists)$ is incorporated in an axiom. The soundness and $\omega$-completeness of the constructed calculus $G^+_\omega$ are proved.
@article{ZNSL_2002_293_a8,
     author = {R. Pliu\v{s}kevi\v{c}ius},
     title = {Intertible infinitary calculus without loop rules for a restricted {FTL}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--180},
     publisher = {mathdoc},
     volume = {293},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a8/}
}
TY  - JOUR
AU  - R. Pliuškevičius
TI  - Intertible infinitary calculus without loop rules for a restricted FTL
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 149
EP  - 180
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a8/
LA  - en
ID  - ZNSL_2002_293_a8
ER  - 
%0 Journal Article
%A R. Pliuškevičius
%T Intertible infinitary calculus without loop rules for a restricted FTL
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 149-180
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a8/
%G en
%F ZNSL_2002_293_a8
R. Pliuškevičius. Intertible infinitary calculus without loop rules for a restricted FTL. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 149-180. http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a8/