A $2^{|E|/4}$-time Algorithm for MAX-CUT
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 129-138

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present an exact algorithm solving MAX-CUT in time $\operatorname{poly}(|E|)\cdot 2^{|E|/4}$, where $|E|$ is the number of edges (there can be multiple edges between two vertices). This bound improves the previously known bound $\operatorname{poly}(|E|)\cdot 2^{|E|/3}$ of Gramm et al. (2000).
@article{ZNSL_2002_293_a6,
     author = {A. S. Kulikov and S. S. Fedin},
     title = {A $2^{|E|/4}$-time {Algorithm} for {MAX-CUT}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {293},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a6/}
}
TY  - JOUR
AU  - A. S. Kulikov
AU  - S. S. Fedin
TI  - A $2^{|E|/4}$-time Algorithm for MAX-CUT
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 129
EP  - 138
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a6/
LA  - ru
ID  - ZNSL_2002_293_a6
ER  - 
%0 Journal Article
%A A. S. Kulikov
%A S. S. Fedin
%T A $2^{|E|/4}$-time Algorithm for MAX-CUT
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 129-138
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a6/
%G ru
%F ZNSL_2002_293_a6
A. S. Kulikov; S. S. Fedin. A $2^{|E|/4}$-time Algorithm for MAX-CUT. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 129-138. http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a6/