A $2^{|E|/4}$-time Algorithm for MAX-CUT
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 129-138
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we present an exact algorithm solving MAX-CUT in time $\operatorname{poly}(|E|)\cdot 2^{|E|/4}$, where $|E|$ is the number of edges (there can be multiple edges between two vertices). This bound improves the previously known bound $\operatorname{poly}(|E|)\cdot 2^{|E|/3}$ of Gramm et al. (2000).
@article{ZNSL_2002_293_a6,
author = {A. S. Kulikov and S. S. Fedin},
title = {A $2^{|E|/4}$-time {Algorithm} for {MAX-CUT}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {129--138},
publisher = {mathdoc},
volume = {293},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a6/}
}
A. S. Kulikov; S. S. Fedin. A $2^{|E|/4}$-time Algorithm for MAX-CUT. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 129-138. http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a6/