Blocks in $k$-connected graphs
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 59-93

Voir la notice de l'article provenant de la source Math-Net.Ru

For a $k$-connected graph with the help of local vertex connectivity we determine a notion of block and prove some properties of blocks, which generalize the properties of classic biconnected blocks. We investigate the structure of division of a $k$-connected graph by several cutting sets.
@article{ZNSL_2002_293_a3,
     author = {D. V. Karpov},
     title = {Blocks in $k$-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--93},
     publisher = {mathdoc},
     volume = {293},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a3/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - Blocks in $k$-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 59
EP  - 93
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a3/
LA  - ru
ID  - ZNSL_2002_293_a3
ER  - 
%0 Journal Article
%A D. V. Karpov
%T Blocks in $k$-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 59-93
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a3/
%G ru
%F ZNSL_2002_293_a3
D. V. Karpov. Blocks in $k$-connected graphs. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VII, Tome 293 (2002), pp. 59-93. http://geodesic.mathdoc.fr/item/ZNSL_2002_293_a3/