Bicoset groups and symmetric graphs
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VII, Tome 292 (2002), pp. 161-174
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct a functor from the set of bicoset multivalued groups with one Hermite generator to the set of symmetric graphs. The functor makes it possible to desribe the set of bicoset multivalued groups with one Hermite generator as a sum of categories. The categories are indexed by a pair $(\Gamma^U, G^U)$ where $G^U$ is a universal symmetric graph and $G^U$ is a subgroup of $\operatorname{Aut}\Gamma^U$.
@article{ZNSL_2002_292_a9,
author = {P. V. Yagodovskii},
title = {Bicoset groups and symmetric graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {161--174},
publisher = {mathdoc},
volume = {292},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_292_a9/}
}
P. V. Yagodovskii. Bicoset groups and symmetric graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VII, Tome 292 (2002), pp. 161-174. http://geodesic.mathdoc.fr/item/ZNSL_2002_292_a9/