Monodromy and irreducibility criteria with algorithmic applications in zero characteristic
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VII, Tome 292 (2002), pp. 130-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a projective algebraic variety $V$ which is the set of all common zeroes of homogeneous polynomials of degrees less than $d$ in $n+1$ variables in zero-characteristic. We suggest an algorithm to decide whether two (or more) given points of $V$ belong to the same irreducible component of $V$. Besides that we show how to construct for each $s an $(s+1)$-dimensional plane in the projective space such that the intersection of every irreducible component of dimension $n-s$ of $V$ with the constructed plane is transversal and is an irreducible curve. These algorithms are deterministic and polynomial in $d^n$ and the size of input.
@article{ZNSL_2002_292_a7,
     author = {A. L. Chistov},
     title = {Monodromy and irreducibility criteria with algorithmic applications in zero characteristic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--152},
     year = {2002},
     volume = {292},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_292_a7/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Monodromy and irreducibility criteria with algorithmic applications in zero characteristic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 130
EP  - 152
VL  - 292
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_292_a7/
LA  - ru
ID  - ZNSL_2002_292_a7
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Monodromy and irreducibility criteria with algorithmic applications in zero characteristic
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 130-152
%V 292
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_292_a7/
%G ru
%F ZNSL_2002_292_a7
A. L. Chistov. Monodromy and irreducibility criteria with algorithmic applications in zero characteristic. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VII, Tome 292 (2002), pp. 130-152. http://geodesic.mathdoc.fr/item/ZNSL_2002_292_a7/