Unified quantization of three-dimensional bialgebras
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 169-184

Voir la notice de l'article provenant de la source Math-Net.Ru

The joint multiparameter quantization of several three-dimensional Lie algebras is given. Among the quantized algebras one finds the Heisenberg algebra, the algebra of motions of the (pseudo)euclidean plane and $su(2)$. Such a quantization is possible because all of the mentioned algebras are dual to the same solvable Lie algebra. The explicit form of the number $R$-matrix is given which allows to encode some of the commutation relations in the form of the RTT-equation.
@article{ZNSL_2002_291_a9,
     author = {E. V. Damaskinsky and P. P. Kulish and M. A. Sokolov},
     title = {Unified quantization of three-dimensional bialgebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--184},
     publisher = {mathdoc},
     volume = {291},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a9/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
AU  - P. P. Kulish
AU  - M. A. Sokolov
TI  - Unified quantization of three-dimensional bialgebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 169
EP  - 184
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a9/
LA  - ru
ID  - ZNSL_2002_291_a9
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%A P. P. Kulish
%A M. A. Sokolov
%T Unified quantization of three-dimensional bialgebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 169-184
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a9/
%G ru
%F ZNSL_2002_291_a9
E. V. Damaskinsky; P. P. Kulish; M. A. Sokolov. Unified quantization of three-dimensional bialgebras. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 169-184. http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a9/