The reflection operator and canonical bases
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 109-130

Voir la notice de l'article provenant de la source Math-Net.Ru

A canonical bases in Hilbert space of automorphic functions is constructed, the invariance group of which has a nontrivial multiplicator.
@article{ZNSL_2002_291_a6,
     author = {A. I. Vinogradov},
     title = {The reflection operator and canonical bases},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--130},
     publisher = {mathdoc},
     volume = {291},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a6/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The reflection operator and canonical bases
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 109
EP  - 130
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a6/
LA  - ru
ID  - ZNSL_2002_291_a6
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The reflection operator and canonical bases
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 109-130
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a6/
%G ru
%F ZNSL_2002_291_a6
A. I. Vinogradov. The reflection operator and canonical bases. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 109-130. http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a6/