A family of integrable systems on a sphere
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 263-277

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss some construction of non-canonical transformations connecting different integrable systems on the Poisson manifold. All the considered maps consist of canonical transformations of symplectic leaves and parallel translations induced by diffeomorphisms in the base of symplectic foliation.
@article{ZNSL_2002_291_a15,
     author = {A. V. Tsiganov},
     title = {A family of integrable systems on a sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {263--277},
     publisher = {mathdoc},
     volume = {291},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a15/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - A family of integrable systems on a sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 263
EP  - 277
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a15/
LA  - ru
ID  - ZNSL_2002_291_a15
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T A family of integrable systems on a sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 263-277
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a15/
%G ru
%F ZNSL_2002_291_a15
A. V. Tsiganov. A family of integrable systems on a sphere. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 263-277. http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a15/