Algebras of power series of elements of a Lie algebra, and Slodkowski spectra
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 72-121

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological algebras of (convergent) power series of elements of a Lie algebra are introduced and the existence of continuous homomorphisms of these algebras into an operator algebra is studied. For Slodkowski spectra, the spectral mapping theorem $\sigma_{\delta, k}(f(a))=f(\sigma_{\delta,k}(a))$, $\sigma_{\pi,k}(f(a))=f(\sigma_{\pi,k}(a))$ is proved for generators $a$ of a finite-dimensional nilpotent Lie algebra of bounded linear operators whenever the family $f$ of elements of a power series algebra is finite-dimensional.
@article{ZNSL_2002_290_a4,
     author = {A. A. Dosiev},
     title = {Algebras of power series of elements of a {Lie} algebra, and {Slodkowski} spectra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--121},
     publisher = {mathdoc},
     volume = {290},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a4/}
}
TY  - JOUR
AU  - A. A. Dosiev
TI  - Algebras of power series of elements of a Lie algebra, and Slodkowski spectra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 72
EP  - 121
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a4/
LA  - ru
ID  - ZNSL_2002_290_a4
ER  - 
%0 Journal Article
%A A. A. Dosiev
%T Algebras of power series of elements of a Lie algebra, and Slodkowski spectra
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 72-121
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a4/
%G ru
%F ZNSL_2002_290_a4
A. A. Dosiev. Algebras of power series of elements of a Lie algebra, and Slodkowski spectra. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 72-121. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a4/