Singular symmetric functionals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 42-71
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a continuation of the study started in [3]. A linear functional $f$ on a rearrangement invariant space $E$ on $(0, \infty)$ is said to be symmetric if for $x, y\in E$ the condition
$$
\int\limits^t_0x^*(s)sd\le\int\limits^t_0y^*(s)ds,\quad t>0,
$$
implies that $f(x)\le f(y)$. A new construction of singular symmetric functionals on the Marcinkiewicz space $M(\psi)$ is presented and studied in detail. A necessary and sufficient condition in terms of $\psi$ is obtained for the seminorms equal to distance to $M(\psi)\cap L_1$ and $M(\psi)\cap L_{\infty}$ to be recoverable in terms of the symmetric singular functionals on $M(\psi)$.
@article{ZNSL_2002_290_a3,
author = {P. G. Dodds and B. De Pagter and A. A. Sedaev and E. M. Semenov and F. A. Sukochev},
title = {Singular symmetric functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--71},
publisher = {mathdoc},
volume = {290},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a3/}
}
TY - JOUR AU - P. G. Dodds AU - B. De Pagter AU - A. A. Sedaev AU - E. M. Semenov AU - F. A. Sukochev TI - Singular symmetric functionals JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 42 EP - 71 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a3/ LA - ru ID - ZNSL_2002_290_a3 ER -
P. G. Dodds; B. De Pagter; A. A. Sedaev; E. M. Semenov; F. A. Sukochev. Singular symmetric functionals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 42-71. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a3/