Hilbert space unconditional bases formed by values of an entire vector-function of order~1/2
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 33-41
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B$ a dissipative Volterra operator in a separable Hilbert space $\mathfrak H$ such that the resolvent $(I-zB)^{-1}$ has finite exponential type. A complete description is given of the operators $B$ with the above properties, vectors $g\in\mathfrak H$, and sequences $\Lambda$ of complex numbers such that the family
$$
(I-\lambda_kB^2)^{-1}, \quad \lambda_k\in\Lambda,
$$
forms an unconditional basis in $\mathfrak H$.
@article{ZNSL_2002_290_a2,
author = {G. M. Gubreev and M. G. Volkova},
title = {Hilbert space unconditional bases formed by values of an entire vector-function of order~1/2},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--41},
publisher = {mathdoc},
volume = {290},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a2/}
}
TY - JOUR AU - G. M. Gubreev AU - M. G. Volkova TI - Hilbert space unconditional bases formed by values of an entire vector-function of order~1/2 JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 33 EP - 41 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a2/ LA - ru ID - ZNSL_2002_290_a2 ER -
G. M. Gubreev; M. G. Volkova. Hilbert space unconditional bases formed by values of an entire vector-function of order~1/2. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a2/