Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 27-32
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be a contraction, let $S$ be an unilateral shift of finite multiplicity, and let $X$ be an operator with zero kernel, dense range, and such that $XT=SX$. Then the mapping $E\mapsto\text{clos}XE$, $E\in\text{Lat}T$, is an isomorphism between the latticies $\text{Lat}T$ and $\text{Lat}S$ of invariant subspaces of $T$ and $S$.
@article{ZNSL_2002_290_a1,
author = {M. F. Gamal'},
title = {Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--32},
publisher = {mathdoc},
volume = {290},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/}
}
TY - JOUR AU - M. F. Gamal' TI - Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 27 EP - 32 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/ LA - ru ID - ZNSL_2002_290_a1 ER -
M. F. Gamal'. Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 27-32. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/