Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 27-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be a contraction, let $S$ be an unilateral shift of finite multiplicity, and let $X$ be an operator with zero kernel, dense range, and such that $XT=SX$. Then the mapping $E\mapsto\text{clos}XE$, $E\in\text{Lat}T$, is an isomorphism between the latticies $\text{Lat}T$ and $\text{Lat}S$ of invariant subspaces of $T$ and $S$.
@article{ZNSL_2002_290_a1,
     author = {M. F. Gamal'},
     title = {Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--32},
     publisher = {mathdoc},
     volume = {290},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 27
EP  - 32
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/
LA  - ru
ID  - ZNSL_2002_290_a1
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 27-32
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/
%G ru
%F ZNSL_2002_290_a1
M. F. Gamal'. Lattcies of invariant subspaces for a quasiaffine transform of a unilateral shift of finite multiplicity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 27-32. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a1/